1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
# Source: https://github.com/python/pyperformance
# License: MIT
# Simple, brute-force N-Queens solver.
# author: collinwinter@google.com (Collin Winter)
# n_queens function: Copyright 2009 Raymond Hettinger
# Pure-Python implementation of itertools.permutations().
def permutations(iterable, r=None):
"""permutations(range(3), 2) --> (0,1) (0,2) (1,0) (1,2) (2,0) (2,1)"""
pool = tuple(iterable)
n = len(pool)
if r is None:
r = n
indices = list(range(n))
cycles = list(range(n - r + 1, n + 1))[::-1]
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i + 1 :] + indices[i : i + 1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
# From http://code.activestate.com/recipes/576647/
def n_queens(queen_count):
"""N-Queens solver.
Args: queen_count: the number of queens to solve for, same as board size.
Yields: Solutions to the problem, each yielded value is a N-tuple.
"""
cols = range(queen_count)
for vec in permutations(cols):
if queen_count == len(set(vec[i] + i for i in cols)) == len(set(vec[i] - i for i in cols)):
yield vec
###########################################################################
# Benchmark interface
bm_params = {
(32, 10): (1, 5),
(100, 25): (1, 6),
(1000, 100): (1, 7),
(5000, 100): (1, 8),
}
def bm_setup(params):
res = None
def run():
nonlocal res
for _ in range(params[0]):
res = len(list(n_queens(params[1])))
def result():
return params[0] * 10 ** (params[1] - 3), res
return run, result
|