summaryrefslogtreecommitdiffstatshomepage
path: root/tests/perf_bench/bm_hexiom.py
blob: 84eda9a90966ef21fd287a32fcec4377911541a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# Source: https://github.com/python/pyperformance
# License: MIT

# Solver of Hexiom board game.
# Benchmark from Laurent Vaucher.
# Source: https://github.com/slowfrog/hexiom : hexiom2.py, level36.txt
# (Main function tweaked by Armin Rigo.)


##################################
class Dir(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y


DIRS = [Dir(1, 0), Dir(-1, 0), Dir(0, 1), Dir(0, -1), Dir(1, 1), Dir(-1, -1)]

EMPTY = 7

##################################


class Done(object):
    MIN_CHOICE_STRATEGY = 0
    MAX_CHOICE_STRATEGY = 1
    HIGHEST_VALUE_STRATEGY = 2
    FIRST_STRATEGY = 3
    MAX_NEIGHBORS_STRATEGY = 4
    MIN_NEIGHBORS_STRATEGY = 5

    def __init__(self, count, empty=False):
        self.count = count
        self.cells = None if empty else [[0, 1, 2, 3, 4, 5, 6, EMPTY] for i in range(count)]

    def clone(self):
        ret = Done(self.count, True)
        ret.cells = [self.cells[i][:] for i in range(self.count)]
        return ret

    def __getitem__(self, i):
        return self.cells[i]

    def set_done(self, i, v):
        self.cells[i] = [v]

    def already_done(self, i):
        return len(self.cells[i]) == 1

    def remove(self, i, v):
        if v in self.cells[i]:
            self.cells[i].remove(v)
            return True
        else:
            return False

    def remove_all(self, v):
        for i in range(self.count):
            self.remove(i, v)

    def remove_unfixed(self, v):
        changed = False
        for i in range(self.count):
            if not self.already_done(i):
                if self.remove(i, v):
                    changed = True
        return changed

    def filter_tiles(self, tiles):
        for v in range(8):
            if tiles[v] == 0:
                self.remove_all(v)

    def next_cell_min_choice(self):
        minlen = 10
        mini = -1
        for i in range(self.count):
            if 1 < len(self.cells[i]) < minlen:
                minlen = len(self.cells[i])
                mini = i
        return mini

    def next_cell_max_choice(self):
        maxlen = 1
        maxi = -1
        for i in range(self.count):
            if maxlen < len(self.cells[i]):
                maxlen = len(self.cells[i])
                maxi = i
        return maxi

    def next_cell_highest_value(self):
        maxval = -1
        maxi = -1
        for i in range(self.count):
            if not self.already_done(i):
                maxvali = max(k for k in self.cells[i] if k != EMPTY)
                if maxval < maxvali:
                    maxval = maxvali
                    maxi = i
        return maxi

    def next_cell_first(self):
        for i in range(self.count):
            if not self.already_done(i):
                return i
        return -1

    def next_cell_max_neighbors(self, pos):
        maxn = -1
        maxi = -1
        for i in range(self.count):
            if not self.already_done(i):
                cells_around = pos.hex.get_by_id(i).links
                n = sum(
                    1 if (self.already_done(nid) and (self[nid][0] != EMPTY)) else 0
                    for nid in cells_around
                )
                if n > maxn:
                    maxn = n
                    maxi = i
        return maxi

    def next_cell_min_neighbors(self, pos):
        minn = 7
        mini = -1
        for i in range(self.count):
            if not self.already_done(i):
                cells_around = pos.hex.get_by_id(i).links
                n = sum(
                    1 if (self.already_done(nid) and (self[nid][0] != EMPTY)) else 0
                    for nid in cells_around
                )
                if n < minn:
                    minn = n
                    mini = i
        return mini

    def next_cell(self, pos, strategy=HIGHEST_VALUE_STRATEGY):
        if strategy == Done.HIGHEST_VALUE_STRATEGY:
            return self.next_cell_highest_value()
        elif strategy == Done.MIN_CHOICE_STRATEGY:
            return self.next_cell_min_choice()
        elif strategy == Done.MAX_CHOICE_STRATEGY:
            return self.next_cell_max_choice()
        elif strategy == Done.FIRST_STRATEGY:
            return self.next_cell_first()
        elif strategy == Done.MAX_NEIGHBORS_STRATEGY:
            return self.next_cell_max_neighbors(pos)
        elif strategy == Done.MIN_NEIGHBORS_STRATEGY:
            return self.next_cell_min_neighbors(pos)
        else:
            raise Exception("Wrong strategy: %d" % strategy)


##################################


class Node(object):
    def __init__(self, pos, id, links):
        self.pos = pos
        self.id = id
        self.links = links


##################################


class Hex(object):
    def __init__(self, size):
        self.size = size
        self.count = 3 * size * (size - 1) + 1
        self.nodes_by_id = self.count * [None]
        self.nodes_by_pos = {}
        id = 0
        for y in range(size):
            for x in range(size + y):
                pos = (x, y)
                node = Node(pos, id, [])
                self.nodes_by_pos[pos] = node
                self.nodes_by_id[node.id] = node
                id += 1
        for y in range(1, size):
            for x in range(y, size * 2 - 1):
                ry = size + y - 1
                pos = (x, ry)
                node = Node(pos, id, [])
                self.nodes_by_pos[pos] = node
                self.nodes_by_id[node.id] = node
                id += 1

    def link_nodes(self):
        for node in self.nodes_by_id:
            (x, y) = node.pos
            for dir in DIRS:
                nx = x + dir.x
                ny = y + dir.y
                if self.contains_pos((nx, ny)):
                    node.links.append(self.nodes_by_pos[(nx, ny)].id)

    def contains_pos(self, pos):
        return pos in self.nodes_by_pos

    def get_by_pos(self, pos):
        return self.nodes_by_pos[pos]

    def get_by_id(self, id):
        return self.nodes_by_id[id]


##################################
class Pos(object):
    def __init__(self, hex, tiles, done=None):
        self.hex = hex
        self.tiles = tiles
        self.done = Done(hex.count) if done is None else done

    def clone(self):
        return Pos(self.hex, self.tiles, self.done.clone())


##################################


def constraint_pass(pos, last_move=None):
    changed = False
    left = pos.tiles[:]
    done = pos.done

    # Remove impossible values from free cells
    free_cells = range(done.count) if last_move is None else pos.hex.get_by_id(last_move).links
    for i in free_cells:
        if not done.already_done(i):
            vmax = 0
            vmin = 0
            cells_around = pos.hex.get_by_id(i).links
            for nid in cells_around:
                if done.already_done(nid):
                    if done[nid][0] != EMPTY:
                        vmin += 1
                        vmax += 1
                else:
                    vmax += 1

            for num in range(7):
                if (num < vmin) or (num > vmax):
                    if done.remove(i, num):
                        changed = True

    # Computes how many of each value is still free
    for cell in done.cells:
        if len(cell) == 1:
            left[cell[0]] -= 1

    for v in range(8):
        # If there is none, remove the possibility from all tiles
        if (pos.tiles[v] > 0) and (left[v] == 0):
            if done.remove_unfixed(v):
                changed = True
        else:
            possible = sum((1 if v in cell else 0) for cell in done.cells)
            # If the number of possible cells for a value is exactly the number of available tiles
            # put a tile in each cell
            if pos.tiles[v] == possible:
                for i in range(done.count):
                    cell = done.cells[i]
                    if (not done.already_done(i)) and (v in cell):
                        done.set_done(i, v)
                        changed = True

    # Force empty or non-empty around filled cells
    filled_cells = range(done.count) if last_move is None else [last_move]
    for i in filled_cells:
        if done.already_done(i):
            num = done[i][0]
            empties = 0
            filled = 0
            unknown = []
            cells_around = pos.hex.get_by_id(i).links
            for nid in cells_around:
                if done.already_done(nid):
                    if done[nid][0] == EMPTY:
                        empties += 1
                    else:
                        filled += 1
                else:
                    unknown.append(nid)
            if len(unknown) > 0:
                if num == filled:
                    for u in unknown:
                        if EMPTY in done[u]:
                            done.set_done(u, EMPTY)
                            changed = True
                        # else:
                        #    raise Exception("Houston, we've got a problem")
                elif num == filled + len(unknown):
                    for u in unknown:
                        if done.remove(u, EMPTY):
                            changed = True

    return changed


ASCENDING = 1
DESCENDING = -1


def find_moves(pos, strategy, order):
    done = pos.done
    cell_id = done.next_cell(pos, strategy)
    if cell_id < 0:
        return []

    if order == ASCENDING:
        return [(cell_id, v) for v in done[cell_id]]
    else:
        # Try higher values first and EMPTY last
        moves = list(reversed([(cell_id, v) for v in done[cell_id] if v != EMPTY]))
        if EMPTY in done[cell_id]:
            moves.append((cell_id, EMPTY))
        return moves


def play_move(pos, move):
    (cell_id, i) = move
    pos.done.set_done(cell_id, i)


def print_pos(pos, output):
    hex = pos.hex
    done = pos.done
    size = hex.size
    for y in range(size):
        print(" " * (size - y - 1), end="", file=output)
        for x in range(size + y):
            pos2 = (x, y)
            id = hex.get_by_pos(pos2).id
            if done.already_done(id):
                c = done[id][0] if done[id][0] != EMPTY else "."
            else:
                c = "?"
            print("%s " % c, end="", file=output)
        print(end="\n", file=output)
    for y in range(1, size):
        print(" " * y, end="", file=output)
        for x in range(y, size * 2 - 1):
            ry = size + y - 1
            pos2 = (x, ry)
            id = hex.get_by_pos(pos2).id
            if done.already_done(id):
                c = done[id][0] if done[id][0] != EMPTY else "."
            else:
                c = "?"
            print("%s " % c, end="", file=output)
        print(end="\n", file=output)


OPEN = 0
SOLVED = 1
IMPOSSIBLE = -1


def solved(pos, output, verbose=False):
    hex = pos.hex
    tiles = pos.tiles[:]
    done = pos.done
    exact = True
    all_done = True
    for i in range(hex.count):
        if len(done[i]) == 0:
            return IMPOSSIBLE
        elif done.already_done(i):
            num = done[i][0]
            tiles[num] -= 1
            if tiles[num] < 0:
                return IMPOSSIBLE
            vmax = 0
            vmin = 0
            if num != EMPTY:
                cells_around = hex.get_by_id(i).links
                for nid in cells_around:
                    if done.already_done(nid):
                        if done[nid][0] != EMPTY:
                            vmin += 1
                            vmax += 1
                    else:
                        vmax += 1

                if (num < vmin) or (num > vmax):
                    return IMPOSSIBLE
                if num != vmin:
                    exact = False
        else:
            all_done = False

    if (not all_done) or (not exact):
        return OPEN

    print_pos(pos, output)
    return SOLVED


def solve_step(prev, strategy, order, output, first=False):
    if first:
        pos = prev.clone()
        while constraint_pass(pos):
            pass
    else:
        pos = prev

    moves = find_moves(pos, strategy, order)
    if len(moves) == 0:
        return solved(pos, output)
    else:
        for move in moves:
            # print("Trying (%d, %d)" % (move[0], move[1]))
            ret = OPEN
            new_pos = pos.clone()
            play_move(new_pos, move)
            # print_pos(new_pos)
            while constraint_pass(new_pos, move[0]):
                pass
            cur_status = solved(new_pos, output)
            if cur_status != OPEN:
                ret = cur_status
            else:
                ret = solve_step(new_pos, strategy, order, output)
            if ret == SOLVED:
                return SOLVED
    return IMPOSSIBLE


def check_valid(pos):
    hex = pos.hex
    tiles = pos.tiles
    # fill missing entries in tiles
    tot = 0
    for i in range(8):
        if tiles[i] > 0:
            tot += tiles[i]
        else:
            tiles[i] = 0
    # check total
    if tot != hex.count:
        raise Exception("Invalid input. Expected %d tiles, got %d." % (hex.count, tot))


def solve(pos, strategy, order, output):
    check_valid(pos)
    return solve_step(pos, strategy, order, output, first=True)


# TODO Write an 'iterator' to go over all x,y positions


def read_file(file):
    lines = [line.strip("\r\n") for line in file.splitlines()]
    size = int(lines[0])
    hex = Hex(size)
    linei = 1
    tiles = 8 * [0]
    done = Done(hex.count)
    for y in range(size):
        line = lines[linei][size - y - 1 :]
        p = 0
        for x in range(size + y):
            tile = line[p : p + 2]
            p += 2
            if tile[1] == ".":
                inctile = EMPTY
            else:
                inctile = int(tile)
            tiles[inctile] += 1
            # Look for locked tiles
            if tile[0] == "+":
                # print("Adding locked tile: %d at pos %d, %d, id=%d" %
                #      (inctile, x, y, hex.get_by_pos((x, y)).id))
                done.set_done(hex.get_by_pos((x, y)).id, inctile)

        linei += 1
    for y in range(1, size):
        ry = size - 1 + y
        line = lines[linei][y:]
        p = 0
        for x in range(y, size * 2 - 1):
            tile = line[p : p + 2]
            p += 2
            if tile[1] == ".":
                inctile = EMPTY
            else:
                inctile = int(tile)
            tiles[inctile] += 1
            # Look for locked tiles
            if tile[0] == "+":
                # print("Adding locked tile: %d at pos %d, %d, id=%d" %
                #      (inctile, x, ry, hex.get_by_pos((x, ry)).id))
                done.set_done(hex.get_by_pos((x, ry)).id, inctile)
        linei += 1
    hex.link_nodes()
    done.filter_tiles(tiles)
    return Pos(hex, tiles, done)


def solve_file(file, strategy, order, output):
    pos = read_file(file)
    solve(pos, strategy, order, output)


LEVELS = {}

LEVELS[2] = (
    """
2
  . 1
 . 1 1
  1 .
""",
    """\
 1 1
. . .
 1 1
""",
)

LEVELS[10] = (
    """
3
  +.+. .
 +. 0 . 2
 . 1+2 1 .
  2 . 0+.
   .+.+.
""",
    """\
  . . 1
 . 1 . 2
0 . 2 2 .
 . . . .
  0 . .
""",
)

LEVELS[20] = (
    """
3
   . 5 4
  . 2+.+1
 . 3+2 3 .
 +2+. 5 .
   . 3 .
""",
    """\
  3 3 2
 4 5 . 1
3 5 2 . .
 2 . . .
  . . .
""",
)

LEVELS[25] = (
    """
3
   4 . .
  . . 2 .
 4 3 2 . 4
  2 2 3 .
   4 2 4
""",
    """\
  3 4 2
 2 4 4 .
. . . 4 2
 . 2 4 3
  . 2 .
""",
)

LEVELS[30] = (
    """
4
    5 5 . .
   3 . 2+2 6
  3 . 2 . 5 .
 . 3 3+4 4 . 3
  4 5 4 . 5 4
   5+2 . . 3
    4 . . .
""",
    """\
   3 4 3 .
  4 6 5 2 .
 2 5 5 . . 2
. . 5 4 . 4 3
 . 3 5 4 5 4
  . 2 . 3 3
   . . . .
""",
)

LEVELS[36] = (
    """
4
    2 1 1 2
   3 3 3 . .
  2 3 3 . 4 .
 . 2 . 2 4 3 2
  2 2 . . . 2
   4 3 4 . .
    3 2 3 3
""",
    """\
   3 4 3 2
  3 4 4 . 3
 2 . . 3 4 3
2 . 1 . 3 . 2
 3 3 . 2 . 2
  3 . 2 . 2
   2 2 . 1
""",
)


###########################################################################
# Benchmark interface

bm_params = {
    (100, 100): (1, 10, DESCENDING, Done.FIRST_STRATEGY),
    (1000, 1000): (1, 25, DESCENDING, Done.FIRST_STRATEGY),
    (5000, 1000): (10, 25, DESCENDING, Done.FIRST_STRATEGY),
}


def bm_setup(params):
    try:
        import uio as io
    except ImportError:
        import io

    loops, level, order, strategy = params

    board, solution = LEVELS[level]
    board = board.strip()
    expected = solution.rstrip()
    output = None

    def run():
        nonlocal output
        for _ in range(loops):
            stream = io.StringIO()
            solve_file(board, strategy, order, stream)
            output = stream.getvalue()
            stream = None

    def result():
        norm = params[0] * params[1]
        out = "\n".join(line.rstrip() for line in output.splitlines())
        return norm, ((out == expected), out)

    return run, result