1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
# Source: https://github.com/python/pyperformance
# License: MIT
# create chaosgame-like fractals
# Copyright (C) 2005 Carl Friedrich Bolz
import math
import random
class GVector(object):
def __init__(self, x=0, y=0, z=0):
self.x = x
self.y = y
self.z = z
def Mag(self):
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
def dist(self, other):
return math.sqrt(
(self.x - other.x) ** 2 + (self.y - other.y) ** 2 + (self.z - other.z) ** 2
)
def __add__(self, other):
if not isinstance(other, GVector):
raise ValueError("Can't add GVector to " + str(type(other)))
v = GVector(self.x + other.x, self.y + other.y, self.z + other.z)
return v
def __sub__(self, other):
return self + other * -1
def __mul__(self, other):
v = GVector(self.x * other, self.y * other, self.z * other)
return v
__rmul__ = __mul__
def linear_combination(self, other, l1, l2=None):
if l2 is None:
l2 = 1 - l1
v = GVector(
self.x * l1 + other.x * l2, self.y * l1 + other.y * l2, self.z * l1 + other.z * l2
)
return v
def __str__(self):
return "<%f, %f, %f>" % (self.x, self.y, self.z)
def __repr__(self):
return "GVector(%f, %f, %f)" % (self.x, self.y, self.z)
class Spline(object):
"""Class for representing B-Splines and NURBS of arbitrary degree"""
def __init__(self, points, degree, knots):
"""Creates a Spline.
points is a list of GVector, degree is the degree of the Spline.
"""
if len(points) > len(knots) - degree + 1:
raise ValueError("too many control points")
elif len(points) < len(knots) - degree + 1:
raise ValueError("not enough control points")
last = knots[0]
for cur in knots[1:]:
if cur < last:
raise ValueError("knots not strictly increasing")
last = cur
self.knots = knots
self.points = points
self.degree = degree
def GetDomain(self):
"""Returns the domain of the B-Spline"""
return (self.knots[self.degree - 1], self.knots[len(self.knots) - self.degree])
def __call__(self, u):
"""Calculates a point of the B-Spline using de Boors Algorithm"""
dom = self.GetDomain()
if u < dom[0] or u > dom[1]:
raise ValueError("Function value not in domain")
if u == dom[0]:
return self.points[0]
if u == dom[1]:
return self.points[-1]
I = self.GetIndex(u)
d = [self.points[I - self.degree + 1 + ii] for ii in range(self.degree + 1)]
U = self.knots
for ik in range(1, self.degree + 1):
for ii in range(I - self.degree + ik + 1, I + 2):
ua = U[ii + self.degree - ik]
ub = U[ii - 1]
co1 = (ua - u) / (ua - ub)
co2 = (u - ub) / (ua - ub)
index = ii - I + self.degree - ik - 1
d[index] = d[index].linear_combination(d[index + 1], co1, co2)
return d[0]
def GetIndex(self, u):
dom = self.GetDomain()
for ii in range(self.degree - 1, len(self.knots) - self.degree):
if u >= self.knots[ii] and u < self.knots[ii + 1]:
I = ii
break
else:
I = dom[1] - 1
return I
def __len__(self):
return len(self.points)
def __repr__(self):
return "Spline(%r, %r, %r)" % (self.points, self.degree, self.knots)
def write_ppm(im, w, h, filename):
with open(filename, "wb") as f:
f.write(b"P6\n%i %i\n255\n" % (w, h))
for j in range(h):
for i in range(w):
val = im[j * w + i]
c = val * 255
f.write(b"%c%c%c" % (c, c, c))
class Chaosgame(object):
def __init__(self, splines, thickness, subdivs):
self.splines = splines
self.thickness = thickness
self.minx = min([p.x for spl in splines for p in spl.points])
self.miny = min([p.y for spl in splines for p in spl.points])
self.maxx = max([p.x for spl in splines for p in spl.points])
self.maxy = max([p.y for spl in splines for p in spl.points])
self.height = self.maxy - self.miny
self.width = self.maxx - self.minx
self.num_trafos = []
maxlength = thickness * self.width / self.height
for spl in splines:
length = 0
curr = spl(0)
for i in range(1, subdivs + 1):
last = curr
t = 1 / subdivs * i
curr = spl(t)
length += curr.dist(last)
self.num_trafos.append(max(1, int(length / maxlength * 1.5)))
self.num_total = sum(self.num_trafos)
def get_random_trafo(self):
r = random.randrange(int(self.num_total) + 1)
l = 0
for i in range(len(self.num_trafos)):
if r >= l and r < l + self.num_trafos[i]:
return i, random.randrange(self.num_trafos[i])
l += self.num_trafos[i]
return len(self.num_trafos) - 1, random.randrange(self.num_trafos[-1])
def transform_point(self, point, trafo=None):
x = (point.x - self.minx) / self.width
y = (point.y - self.miny) / self.height
if trafo is None:
trafo = self.get_random_trafo()
start, end = self.splines[trafo[0]].GetDomain()
length = end - start
seg_length = length / self.num_trafos[trafo[0]]
t = start + seg_length * trafo[1] + seg_length * x
basepoint = self.splines[trafo[0]](t)
if t + 1 / 50000 > end:
neighbour = self.splines[trafo[0]](t - 1 / 50000)
derivative = neighbour - basepoint
else:
neighbour = self.splines[trafo[0]](t + 1 / 50000)
derivative = basepoint - neighbour
if derivative.Mag() != 0:
basepoint.x += derivative.y / derivative.Mag() * (y - 0.5) * self.thickness
basepoint.y += -derivative.x / derivative.Mag() * (y - 0.5) * self.thickness
else:
# can happen, especially with single precision float
pass
self.truncate(basepoint)
return basepoint
def truncate(self, point):
if point.x >= self.maxx:
point.x = self.maxx
if point.y >= self.maxy:
point.y = self.maxy
if point.x < self.minx:
point.x = self.minx
if point.y < self.miny:
point.y = self.miny
def create_image_chaos(self, w, h, iterations, rng_seed):
# Always use the same sequence of random numbers
# to get reproductible benchmark
random.seed(rng_seed)
im = bytearray(w * h)
point = GVector((self.maxx + self.minx) / 2, (self.maxy + self.miny) / 2, 0)
for _ in range(iterations):
point = self.transform_point(point)
x = (point.x - self.minx) / self.width * w
y = (point.y - self.miny) / self.height * h
x = int(x)
y = int(y)
if x == w:
x -= 1
if y == h:
y -= 1
im[(h - y - 1) * w + x] = 1
return im
###########################################################################
# Benchmark interface
bm_params = {
(100, 50): (0.25, 100, 50, 50, 50, 1234),
(1000, 1000): (0.25, 200, 400, 400, 1000, 1234),
(5000, 1000): (0.25, 400, 500, 500, 7000, 1234),
}
def bm_setup(params):
splines = [
Spline(
[
GVector(1.597, 3.304, 0.0),
GVector(1.576, 4.123, 0.0),
GVector(1.313, 5.288, 0.0),
GVector(1.619, 5.330, 0.0),
GVector(2.890, 5.503, 0.0),
GVector(2.373, 4.382, 0.0),
GVector(1.662, 4.360, 0.0),
],
3,
[0, 0, 0, 1, 1, 1, 2, 2, 2],
),
Spline(
[
GVector(2.805, 4.017, 0.0),
GVector(2.551, 3.525, 0.0),
GVector(1.979, 2.620, 0.0),
GVector(1.979, 2.620, 0.0),
],
3,
[0, 0, 0, 1, 1, 1],
),
Spline(
[
GVector(2.002, 4.011, 0.0),
GVector(2.335, 3.313, 0.0),
GVector(2.367, 3.233, 0.0),
GVector(2.367, 3.233, 0.0),
],
3,
[0, 0, 0, 1, 1, 1],
),
]
chaos = Chaosgame(splines, params[0], params[1])
image = None
def run():
nonlocal image
_, _, width, height, iter, rng_seed = params
image = chaos.create_image_chaos(width, height, iter, rng_seed)
def result():
norm = params[4]
# Images are not the same when floating point behaviour is different,
# so return percentage of pixels that are set (rounded to int).
# write_ppm(image, params[2], params[3], 'out-.ppm')
pix = int(100 * sum(image) / len(image))
return norm, pix
return run, result
|