1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
* Copyright (c) 2020 Yonatan Schachter
* Copyright (c) 2025 Daniel Campora on behalf of REMOTE TECH LTD
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include <zephyr/kernel.h>
#include <zephyr/drivers/uart.h>
#include "py/mperrno.h"
#include "py/ringbuf.h"
#include "zephyr_device.h"
#define MACHINE_UART_RTS 1
#define MACHINE_UART_CTS 2
// This class needs a finalizer, so we add it here
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(MACHINE_UART_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(MACHINE_UART_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_uart_deinit_obj) },
#define UART_RX_RING_BUF_DEF_SIZE 128
#define UART_TX_RING_BUF_DEF_SIZE 128
static void uart_interrupt_handler(const struct device *dev, void *user_data);
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
const struct device *dev;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
ringbuf_t rx_ringbuffer;
ringbuf_t tx_ringbuffer;
bool tx_complete;
} machine_uart_obj_t;
static const char *_parity_name[] = {"None", "Odd", "Even", "Mark", "Space"};
static const char *_stop_bits_name[] = {"0.5", "1", "1.5", "2"};
static const char *_data_bits_name[] = {"5", "6", "7", "8", "9"};
static const char *_flow_control_name[] = {"None", "RTS/CTS", "DTR/DSR"};
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
struct uart_config config;
uart_config_get(self->dev, &config);
mp_printf(print, "UART(\"%s\", baudrate=%u, data_bits=%s, parity_bits=%s, stop_bits=%s, flow_control=%s, timeout=%u, timeout_char=%u)",
self->dev->name, config.baudrate, _data_bits_name[config.data_bits],
_parity_name[config.parity], _stop_bits_name[config.stop_bits], _flow_control_name[config.flow_ctrl],
self->timeout, self->timeout_char);
}
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_txbuf, ARG_rxbuf, ARG_timeout, ARG_timeout_char, ARG_flow };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 115200} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_RX_RING_BUF_DEF_SIZE} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_TX_RING_BUF_DEF_SIZE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->timeout = args[ARG_timeout].u_int;
self->timeout_char = args[ARG_timeout_char].u_int;
uint8_t data_bits;
if (args[ARG_bits].u_int == 5) {
data_bits = UART_CFG_DATA_BITS_5;
} else if (args[ARG_bits].u_int == 6) {
data_bits = UART_CFG_DATA_BITS_6;
} else if (args[ARG_bits].u_int == 7) {
data_bits = UART_CFG_DATA_BITS_7;
} else if (args[ARG_bits].u_int == 8) {
data_bits = UART_CFG_DATA_BITS_8;
} else if (args[ARG_bits].u_int == 9) {
data_bits = UART_CFG_DATA_BITS_9;
} else {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid data bits"));
}
uint8_t parity;
if (args[ARG_parity].u_obj == mp_const_none) {
parity = UART_CFG_PARITY_NONE;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) == 0) {
parity = UART_CFG_PARITY_EVEN;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) == 1) {
parity = UART_CFG_PARITY_ODD;
} else {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid parity"));
}
uint8_t stop_bits;
if (args[ARG_stop].u_int == 1) {
stop_bits = UART_CFG_STOP_BITS_1;
} else if (args[ARG_stop].u_int == 2) {
data_bits = UART_CFG_STOP_BITS_2;
} else {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid stop bits"));
}
uint8_t flow_ctrl;
if (args[ARG_flow].u_int == 0) {
flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
} else if (args[ARG_flow].u_int == (MACHINE_UART_RTS | MACHINE_UART_CTS)) {
flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
} else {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid flow control"));
}
const struct uart_config cfg = {
.baudrate = args[ARG_baudrate].u_int,
.parity = parity,
.stop_bits = args[ARG_stop].u_int,
.data_bits = data_bits,
.flow_ctrl = flow_ctrl
};
int ret = uart_configure(self->dev, &cfg);
if (ret < 0) {
mp_raise_OSError(-ret);
}
ringbuf_alloc(&self->tx_ringbuffer, args[ARG_txbuf].u_int);
ringbuf_alloc(&self->rx_ringbuffer, args[ARG_rxbuf].u_int);
uart_irq_callback_user_data_set(self->dev, uart_interrupt_handler, (void *)self);
uart_irq_rx_enable(self->dev);
}
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
const struct device *dev = zephyr_device_find(args[0]);
machine_uart_obj_t *self = mp_obj_malloc_with_finaliser(machine_uart_obj_t, &machine_uart_type);
self->dev = dev;
self->tx_complete = true;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
uart_irq_rx_disable(self->dev);
uart_irq_tx_disable(self->dev);
}
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
return ringbuf_avail(&self->rx_ringbuffer);
}
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
return self->tx_complete && !ringbuf_avail(&self->tx_ringbuffer) ? true : false;
}
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t *buffer = (uint8_t *)buf_in;
mp_uint_t bytes_read = 0;
size_t elapsed_ms = 0;
size_t time_to_wait = self->timeout;
do {
int _rx_len = MIN(ringbuf_avail(&self->rx_ringbuffer), size - bytes_read);
if (_rx_len > 0) {
ringbuf_get_bytes(&self->rx_ringbuffer, &buffer[bytes_read], _rx_len);
bytes_read += _rx_len;
elapsed_ms = 0;
time_to_wait = self->timeout_char;
} else {
k_msleep(1);
elapsed_ms++;
}
} while ((elapsed_ms < time_to_wait) && (bytes_read < size));
return bytes_read;
}
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t *buffer = (uint8_t *)buf_in;
// wait for any pending transmission to complete
while (!mp_machine_uart_txdone(self)) {
MICROPY_EVENT_POLL_HOOK;
}
int _ex_size = 0;
int _free_space = ringbuf_free(&self->tx_ringbuffer);
if (size > _free_space) {
_ex_size = size - _free_space;
}
// do a blocking tx of what doesn't fit into the outgoing ring buffer
for (mp_uint_t i = 0; i < _ex_size; i++) {
uart_poll_out(self->dev, buffer[i]);
}
ringbuf_put_bytes(&self->tx_ringbuffer, &buffer[_ex_size], size - _ex_size);
self->tx_complete = false;
uart_irq_tx_enable(self->dev);
return size;
}
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret = 0;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
if ((flags & MP_STREAM_POLL_RD) && (mp_machine_uart_any(self) > 0)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && mp_machine_uart_txdone(self)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
while (!mp_machine_uart_txdone(self)) {
MICROPY_EVENT_POLL_HOOK;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
static void uart_interrupt_handler(const struct device *dev, void *user_data) {
machine_uart_obj_t *self = (machine_uart_obj_t *)user_data;
while (uart_irq_update(dev) && uart_irq_is_pending(dev)) {
if (uart_irq_rx_ready(dev)) {
uint8_t _rx_buffer[32];
size_t _free_space = MIN(ringbuf_free(&self->rx_ringbuffer), sizeof(_rx_buffer));
// empty the uart fifo even if we can't store bytes anymore
// otherwise we will never exit this interrupt handler
int rcv_len = uart_fifo_read(dev, _rx_buffer, (_free_space > 0) ? _free_space : 1);
if ((rcv_len <= 0) || (_free_space == 0)) {
continue;
}
ringbuf_put_bytes(&self->rx_ringbuffer, _rx_buffer, rcv_len);
}
int _max_uart_tx_len = uart_irq_tx_ready(dev);
if (_max_uart_tx_len > 0) {
uint8_t _tx_buffer[32];
size_t _buffer_tx_len;
_max_uart_tx_len = MIN(_max_uart_tx_len, sizeof(_tx_buffer));
_buffer_tx_len = ringbuf_avail(&self->tx_ringbuffer);
if (_buffer_tx_len > 0) {
_buffer_tx_len = MIN(_max_uart_tx_len, _buffer_tx_len);
ringbuf_get_bytes(&self->tx_ringbuffer, _tx_buffer, _buffer_tx_len);
uart_fifo_fill(dev, _tx_buffer, _buffer_tx_len);
} else if (uart_irq_tx_complete(dev)) {
uart_irq_tx_disable(dev);
self->tx_complete = true;
}
}
}
}
|