1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2024-2025 OpenMV LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "extmod/modmachine.h"
#if MICROPY_PY_MACHINE_SPI
#include "clk.h"
#include "spi.h"
#include "sys_ctrl_spi.h"
typedef struct _machine_spi_obj_t {
mp_obj_base_t base;
uint8_t id;
SPI_Type *inst;
bool is_lp;
uint32_t bits;
} machine_spi_obj_t;
static machine_spi_obj_t machine_spi_obj[] = {
#if defined(MICROPY_HW_SPI0_SCK)
[0] = {{&machine_spi_type}, 0, (SPI_Type *)SPI0_BASE, false},
#endif
#if defined(MICROPY_HW_SPI1_SCK)
[1] = {{&machine_spi_type}, 1, (SPI_Type *)SPI1_BASE, false},
#endif
#if defined(MICROPY_HW_SPI2_SCK)
[2] = {{&machine_spi_type}, 2, (SPI_Type *)SPI2_BASE, false},
#endif
#if defined(MICROPY_HW_SPI3_SCK)
[3] = {{&machine_spi_type}, 3, (SPI_Type *)SPI3_BASE, false},
#endif
#if defined(MICROPY_HW_LPSPI0_SCK)
[4] = {{&machine_spi_type}, 4, (SPI_Type *)LPSPI0_BASE, true},
#endif
};
static const uint8_t spi_pin_alt[] = {
MP_HAL_PIN_ALT_SPI_SCLK,
MP_HAL_PIN_ALT_SPI_MISO,
MP_HAL_PIN_ALT_SPI_MOSI,
MP_HAL_PIN_ALT_SPI_SS0,
};
static const uint8_t lpspi_pin_alt[] = {
MP_HAL_PIN_ALT_LPSPI_SCLK,
MP_HAL_PIN_ALT_LPSPI_MISO,
MP_HAL_PIN_ALT_LPSPI_MOSI,
MP_HAL_PIN_ALT_LPSPI_SS,
};
static inline uint32_t spi_get_clk(machine_spi_obj_t *spi) {
return spi->is_lp ? GetSystemCoreClock() : GetSystemAHBClock();
}
static void spi_init(machine_spi_obj_t *spi, uint32_t baudrate,
uint32_t polarity, uint32_t phase, uint32_t bits, uint32_t firstbit) {
const machine_pin_obj_t *pins[4] = { NULL, NULL, NULL, NULL };
switch (spi->id) {
#if defined(MICROPY_HW_SPI0_SCK)
case 0:
pins[0] = MICROPY_HW_SPI0_SCK;
pins[1] = MICROPY_HW_SPI0_MISO;
pins[2] = MICROPY_HW_SPI0_MOSI;
#if defined(MICROPY_HW_SPI0_NSS)
pins[3] = MICROPY_HW_SPI0_NSS;
#endif
break;
#endif
#if defined(MICROPY_HW_SPI1_SCK)
case 1:
pins[0] = MICROPY_HW_SPI1_SCK;
pins[1] = MICROPY_HW_SPI1_MISO;
pins[2] = MICROPY_HW_SPI1_MOSI;
#if defined(MICROPY_HW_SPI1_NSS)
pins[3] = MICROPY_HW_SPI1_NSS;
#endif
break;
#endif
#if defined(MICROPY_HW_SPI2_SCK)
case 2:
pins[0] = MICROPY_HW_SPI2_SCK;
pins[1] = MICROPY_HW_SPI2_MISO;
pins[2] = MICROPY_HW_SPI2_MOSI;
#if defined(MICROPY_HW_SPI2_NSS)
pins[3] = MICROPY_HW_SPI2_NSS;
#endif
break;
#endif
#if defined(MICROPY_HW_SPI3_SCK)
case 3:
pins[0] = MICROPY_HW_SPI3_SCK;
pins[1] = MICROPY_HW_SPI3_MISO;
pins[2] = MICROPY_HW_SPI3_MOSI;
#if defined(MICROPY_HW_SPI3_NSS)
pins[3] = MICROPY_HW_SPI3_NSS;
#endif
break;
#endif
#if defined(MICROPY_HW_LPSPI0_SCK)
case 4: // LPSPI0
pins[0] = MICROPY_HW_LPSPI0_SCK;
pins[1] = MICROPY_HW_LPSPI0_MISO;
pins[2] = MICROPY_HW_LPSPI0_MOSI;
#if defined(MICROPY_HW_LPSPI0_NSS)
pins[3] = MICROPY_HW_LPSPI0_NSS;
#endif
break;
#endif
default:
return;
}
// Disable SPI.
spi_disable(spi->inst);
// Enable clocks.
if (spi->is_lp) {
enable_lpspi_clk();
}
// Configure SPI pins.
const uint8_t *alt;
if (spi->id <= 3) {
alt = spi_pin_alt;
} else {
alt = lpspi_pin_alt;
}
for (size_t i = 0; i < MP_ARRAY_SIZE(pins) && pins[i]; i++) {
mp_hal_pin_config(pins[i], MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE,
MP_HAL_PIN_SPEED_HIGH, MP_HAL_PIN_DRIVE_8MA, MP_HAL_PIN_ALT_MAKE(alt[i], spi->id), true);
}
// Disable all interrupts.
spi_mask_interrupts(spi->inst);
// Configure baudrate clock
spi_set_bus_speed(spi->inst, baudrate, spi_get_clk(spi));
// Configure FIFOs
spi_set_tx_threshold(spi->inst, 0);
spi_set_rx_threshold(spi->inst, 0);
if (!spi->is_lp) {
spi_set_rx_sample_delay(spi->inst, 0);
spi_set_tx_fifo_start_level(spi->inst, 0);
}
// Configure SPI bus mode.
uint32_t spi_mode = (polarity << 1) | phase;
if (!spi->is_lp) {
spi_set_mode(spi->inst, spi_mode);
} else {
lpspi_set_mode(spi->inst, spi_mode);
}
// Configure SPI bus protocol.
uint32_t spi_proto = SPI_PROTO_SPI;
if (!spi->is_lp) {
spi_set_protocol(spi->inst, spi_proto);
} else {
lpspi_set_protocol(spi->inst, spi_proto);
}
// Configure SPI transfer mode.
if (!spi->is_lp) {
spi_mode_master(spi->inst);
}
// Configure frame size.
if (!spi->is_lp) {
spi_set_dfs(spi->inst, bits);
} else {
lpspi_set_dfs(spi->inst, bits);
}
// Configure slave select pin
spi_control_ss(spi->inst, 0, true);
if (!spi->is_lp) {
spi_set_sste(spi->inst, false);
} else {
lpspi_set_sste(spi->inst, false);
}
// Clear IRQs.
(void)spi->inst->SPI_ICR;
// Enable SPI.
spi_enable(spi->inst);
}
static void machine_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint32_t baudrate = spi_get_bus_speed(self->inst, spi_get_clk(self));
mp_printf(print, "SPI(%u, baudrate=%u, lp=%u)", self->id, baudrate, self->is_lp);
}
mp_obj_t machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
// Parse args.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Get spi bus.
int spi_id = mp_obj_get_int(args[ARG_id].u_obj);
if (spi_id < 0 || spi_id >= MP_ARRAY_SIZE(machine_spi_obj) || !machine_spi_obj[spi_id].inst) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), spi_id);
}
// Get static peripheral object.
machine_spi_obj_t *self = &machine_spi_obj[spi_id];
// Set args
self->bits = args[ARG_bits].u_int;
// here we would check the sck/mosi/miso pins and configure them, but it's not implemented
if (args[ARG_sck].u_obj != MP_OBJ_NULL ||
args[ARG_mosi].u_obj != MP_OBJ_NULL ||
args[ARG_miso].u_obj != MP_OBJ_NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("explicit choice of sck/mosi/miso is not implemented"));
}
// Initialize and configure SPI.
spi_init(self, args[ARG_baudrate].u_int, args[ARG_polarity].u_int,
args[ARG_phase].u_int, args[ARG_bits].u_int, args[ARG_firstbit].u_int);
return MP_OBJ_FROM_PTR(self);
}
static void machine_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse the arguments.
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Initialize and configure SPI.
spi_init(self, args[ARG_baudrate].u_int, args[ARG_polarity].u_int,
args[ARG_phase].u_int, args[ARG_bits].u_int, args[ARG_firstbit].u_int);
}
static void machine_spi_deinit(mp_obj_base_t *self_in) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
// Disable all interrupts.
spi_mask_interrupts(self->inst);
// Disable SS pin.
spi_control_ss(self->inst, 0, 0);
// Disable SPI.
spi_disable(self->inst);
// Deinitialize GPIOs and clocks.
if (self->is_lp) {
disable_lpspi_clk();
}
}
static void machine_spi_poll_flag(SPI_Type *spi, uint32_t flag, uint32_t timeout) {
mp_uint_t tick_start = mp_hal_ticks_ms();
while (!(spi->SPI_SR & flag)) {
if (mp_hal_ticks_ms() - tick_start >= timeout) {
mp_raise_OSError(MP_ETIMEDOUT);
}
mp_event_handle_nowait();
}
}
static void machine_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_spi_obj_t *self = (machine_spi_obj_t *)self_in;
volatile uint32_t *dr = self->inst->SPI_DR;
spi_set_tmod(self->inst, SPI_TMOD_TX_AND_RX);
for (size_t i = 0; i < len; i++) {
// Wait for space in the TX FIFO
machine_spi_poll_flag(self->inst, SPI_SR_TFNF, 100);
// Send data
if (src == NULL) {
*dr = 0xFFFFFFFFU;
} else if (self->bits > 16) {
*dr = ((uint32_t *)src)[i];
} else if (self->bits > 8) {
*dr = ((uint16_t *)src)[i];
} else {
*dr = ((uint8_t *)src)[i];
}
// Wait for data in the RX FIFO
machine_spi_poll_flag(self->inst, SPI_SR_RFNE, 100);
// Recv data
if (dest == NULL) {
(void)*dr;
} else if (self->bits > 16) {
((uint32_t *)dest)[i] = *dr;
} else if (self->bits > 8) {
((uint16_t *)dest)[i] = *dr;
} else {
((uint8_t *)dest)[i] = *dr;
}
}
}
static const mp_machine_spi_p_t machine_spi_p = {
.init = machine_spi_init,
.deinit = machine_spi_deinit,
.transfer = machine_spi_transfer,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_spi_type,
MP_QSTR_SPI,
MP_TYPE_FLAG_NONE,
make_new, machine_spi_make_new,
print, machine_spi_print,
protocol, &machine_spi_p,
locals_dict, &mp_machine_spi_locals_dict
);
#endif // MICROPY_PY_MACHINE_SPI
|