summaryrefslogtreecommitdiffstatshomepage
path: root/extmod/nimble/modbluetooth_nimble.c
blob: 8d555f1124f9a9ee9d8c81af70a1cac5a5f800ab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2019 Damien P. George
 * Copyright (c) 2019-2020 Jim Mussared
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"

#if MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE

#include "extmod/nimble/modbluetooth_nimble.h"
#include "extmod/modbluetooth.h"
#include "extmod/mpbthci.h"

#include "host/ble_hs.h"
#include "host/util/util.h"
#include "nimble/ble.h"
#include "nimble/nimble_port.h"
#include "services/gap/ble_svc_gap.h"
#include "services/gatt/ble_svc_gatt.h"

#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
// We need the definition of "struct ble_l2cap_chan".
// See l2cap_channel_event() for details.
#include "nimble/host/src/ble_l2cap_priv.h"
#endif

#if MICROPY_PY_BLUETOOTH_ENABLE_HCI_CMD || MICROPY_BLUETOOTH_USE_ZEPHYR_STATIC_ADDRESS
// For ble_hs_hci_cmd_tx
#include "nimble/host/src/ble_hs_hci_priv.h"
#endif

#define DEBUG_printf(...) // printf("nimble: " __VA_ARGS__)

#define ERRNO_BLUETOOTH_NOT_ACTIVE MP_ENODEV

static uint8_t nimble_address_mode = BLE_OWN_ADDR_RANDOM;

#define NIMBLE_STARTUP_TIMEOUT 2000

// Any BLE_HS_xxx code not in this table will default to MP_EIO.
static int8_t ble_hs_err_to_errno_table[] = {
    [BLE_HS_EAGAIN] = MP_EAGAIN,
    [BLE_HS_EALREADY] = MP_EALREADY,
    [BLE_HS_EINVAL] = MP_EINVAL,
    [BLE_HS_ENOENT] = MP_ENOENT,
    [BLE_HS_ENOMEM] = MP_ENOMEM,
    [BLE_HS_ENOTCONN] = MP_ENOTCONN,
    [BLE_HS_ENOTSUP] = MP_EOPNOTSUPP,
    [BLE_HS_ETIMEOUT] = MP_ETIMEDOUT,
    [BLE_HS_EDONE] = MP_EIO,               // TODO: Maybe should be MP_EISCONN (connect uses this for "already connected").
    [BLE_HS_EBUSY] = MP_EBUSY,
    [BLE_HS_EBADDATA] = MP_EINVAL,
};

static int ble_hs_err_to_errno(int err);

static ble_uuid_t *create_nimble_uuid(const mp_obj_bluetooth_uuid_t *uuid, ble_uuid_any_t *storage);
static void reverse_addr_byte_order(uint8_t *addr_out, const uint8_t *addr_in);

#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
static mp_obj_bluetooth_uuid_t create_mp_uuid(const ble_uuid_any_t *uuid);
static ble_addr_t create_nimble_addr(uint8_t addr_type, const uint8_t *addr);
#endif

static void reset_cb(int reason);

static bool has_public_address(void);
static void set_random_address(bool nrpa);

#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
static int load_irk(void);
#endif

static void sync_cb(void);

#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
static void ble_hs_shutdown_stop_cb(int status, void *arg);
#endif

// Successfully registered service/char/desc handles.
static void gatts_register_cb(struct ble_gatt_register_ctxt *ctxt, void *arg);

// Events about a connected central (we're in peripheral role).
static int central_gap_event_cb(struct ble_gap_event *event, void *arg);
#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
// Events about a connected peripheral (we're in central role).
static int peripheral_gap_event_cb(struct ble_gap_event *event, void *arg);
#endif
// Used by both of the above.
static int commmon_gap_event_cb(struct ble_gap_event *event, void *arg);

#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
// Scan results.
static int gap_scan_cb(struct ble_gap_event *event, void *arg);
#endif

#if MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
// Data available (either due to notify/indicate or successful read).
static void gattc_on_data_available(uint8_t event, uint16_t conn_handle, uint16_t value_handle, const struct os_mbuf *om);

// Client discovery callbacks.
static int ble_gattc_service_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_svc *service, void *arg);
static int ble_gattc_characteristic_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_chr *characteristic, void *arg);
static int ble_gattc_descriptor_cb(uint16_t conn_handle, const struct ble_gatt_error *error, uint16_t characteristic_val_handle, const struct ble_gatt_dsc *descriptor, void *arg);

// Client read/write handlers.
static int ble_gattc_attr_read_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg);
static int ble_gattc_attr_write_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg);
#endif

#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
// Bonding store.
static int ble_secret_store_read(int obj_type, const union ble_store_key *key, union ble_store_value *value);
static int ble_secret_store_write(int obj_type, const union ble_store_value *val);
static int ble_secret_store_delete(int obj_type, const union ble_store_key *key);
#endif

static int ble_hs_err_to_errno(int err) {
    DEBUG_printf("ble_hs_err_to_errno: %d\n", err);
    if (!err) {
        return 0;
    }
    if (err >= 0 && (unsigned)err < MP_ARRAY_SIZE(ble_hs_err_to_errno_table) && ble_hs_err_to_errno_table[err]) {
        // Return an MP_Exxx error code.
        return ble_hs_err_to_errno_table[err];
    } else {
        // Pass through the BLE error code.
        return -err;
    }
}

// Note: modbluetooth UUIDs store their data in LE.
static ble_uuid_t *create_nimble_uuid(const mp_obj_bluetooth_uuid_t *uuid, ble_uuid_any_t *storage) {
    if (uuid->type == MP_BLUETOOTH_UUID_TYPE_16) {
        ble_uuid16_t *result = storage ? &storage->u16 : m_new(ble_uuid16_t, 1);
        result->u.type = BLE_UUID_TYPE_16;
        result->value = (uuid->data[1] << 8) | uuid->data[0];
        return (ble_uuid_t *)result;
    } else if (uuid->type == MP_BLUETOOTH_UUID_TYPE_32) {
        ble_uuid32_t *result = storage ? &storage->u32 : m_new(ble_uuid32_t, 1);
        result->u.type = BLE_UUID_TYPE_32;
        result->value = (uuid->data[1] << 24) | (uuid->data[1] << 16) | (uuid->data[1] << 8) | uuid->data[0];
        return (ble_uuid_t *)result;
    } else if (uuid->type == MP_BLUETOOTH_UUID_TYPE_128) {
        ble_uuid128_t *result = storage ? &storage->u128 : m_new(ble_uuid128_t, 1);
        result->u.type = BLE_UUID_TYPE_128;
        memcpy(result->value, uuid->data, 16);
        return (ble_uuid_t *)result;
    } else {
        return NULL;
    }
}

// modbluetooth (and the layers above it) work in BE for addresses, Nimble works in LE.
static void reverse_addr_byte_order(uint8_t *addr_out, const uint8_t *addr_in) {
    for (int i = 0; i < 6; ++i) {
        addr_out[i] = addr_in[5 - i];
    }
}

#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE

static mp_obj_bluetooth_uuid_t create_mp_uuid(const ble_uuid_any_t *uuid) {
    mp_obj_bluetooth_uuid_t result;
    result.base.type = &mp_type_bluetooth_uuid;
    switch (uuid->u.type) {
        case BLE_UUID_TYPE_16:
            result.type = MP_BLUETOOTH_UUID_TYPE_16;
            result.data[0] = uuid->u16.value & 0xff;
            result.data[1] = (uuid->u16.value >> 8) & 0xff;
            break;
        case BLE_UUID_TYPE_32:
            result.type = MP_BLUETOOTH_UUID_TYPE_32;
            result.data[0] = uuid->u32.value & 0xff;
            result.data[1] = (uuid->u32.value >> 8) & 0xff;
            result.data[2] = (uuid->u32.value >> 16) & 0xff;
            result.data[3] = (uuid->u32.value >> 24) & 0xff;
            break;
        case BLE_UUID_TYPE_128:
            result.type = MP_BLUETOOTH_UUID_TYPE_128;
            memcpy(result.data, uuid->u128.value, 16);
            break;
        default:
            assert(false);
    }
    return result;
}

static ble_addr_t create_nimble_addr(uint8_t addr_type, const uint8_t *addr) {
    ble_addr_t addr_nimble;
    addr_nimble.type = addr_type;
    // Incoming addr is from modbluetooth (BE), so copy and convert to LE for Nimble.
    reverse_addr_byte_order(addr_nimble.val, addr);
    return addr_nimble;
}

#endif // MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE

volatile int mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF;

static void reset_cb(int reason) {
    (void)reason;
}

static bool has_public_address(void) {
    return ble_hs_id_copy_addr(BLE_ADDR_PUBLIC, NULL, NULL) == 0;
}

static void set_random_address(bool nrpa) {
    int rc;
    (void)rc;
    ble_addr_t addr;
    #if MICROPY_BLUETOOTH_USE_MP_HAL_GET_MAC_STATIC_ADDRESS
    if (!nrpa) {
        DEBUG_printf("set_random_address: Generating static address using mp_hal_get_mac\n");
        uint8_t hal_mac_addr[6];
        mp_hal_get_mac(MP_HAL_MAC_BDADDR, hal_mac_addr);
        addr = create_nimble_addr(BLE_ADDR_RANDOM, hal_mac_addr);
        // Mark it as STATIC (not RPA or NRPA).
        addr.val[5] |= 0xc0;
    } else
    #elif MICROPY_BLUETOOTH_USE_ZEPHYR_STATIC_ADDRESS
    if (!nrpa) {
        DEBUG_printf("set_random_address: Generating static address from Zephyr controller\n");
        uint8_t buf[23];
        rc = ble_hs_hci_cmd_tx(BLE_HCI_OP(BLE_HCI_OGF_VENDOR, 0x09), NULL, 0, buf, sizeof(buf));
        assert(rc == 0);
        memcpy(addr.val, buf + 1, 6);
    } else
    #endif
    {
        DEBUG_printf("set_random_address: Generating random static address\n");
        rc = ble_hs_id_gen_rnd(nrpa ? 1 : 0, &addr);
        assert(rc == 0);
    }
    rc = ble_hs_id_set_rnd(addr.val);
    assert(rc == 0);
    rc = ble_hs_util_ensure_addr(1);
    assert(rc == 0);
}

#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
// For ble_hs_pvcy_set_our_irk
#include "nimble/host/src/ble_hs_pvcy_priv.h"
// For ble_hs_hci_util_rand
#include "nimble/host/src/ble_hs_hci_priv.h"
// For ble_hs_misc_restore_irks
#include "nimble/host/src/ble_hs_priv.h"

// Must be distinct to BLE_STORE_OBJ_TYPE_ in ble_store.h.
#define SECRET_TYPE_OUR_IRK 10

static int load_irk(void) {
    // NimBLE unconditionally loads a fixed IRK on startup.
    // See https://github.com/apache/mynewt-nimble/issues/887

    // Dummy key to use for the store.
    // Technically the secret type is enough as there will only be
    // one IRK so the key doesn't matter, but a NULL (None) key means "search".
    const uint8_t key[3] = {'i', 'r', 'k'};

    int rc;
    const uint8_t *irk;
    size_t irk_len;
    if (mp_bluetooth_gap_on_get_secret(SECRET_TYPE_OUR_IRK, 0, key, sizeof(key), &irk, &irk_len) && irk_len == 16) {
        DEBUG_printf("load_irk: Applying IRK from store.\n");
        rc = ble_hs_pvcy_set_our_irk(irk);
        if (rc) {
            return rc;
        }
    } else {
        DEBUG_printf("load_irk: Generating new IRK.\n");
        uint8_t rand_irk[16];
        rc = ble_hs_hci_util_rand(rand_irk, 16);
        if (rc) {
            return rc;
        }
        DEBUG_printf("load_irk: Saving new IRK.\n");
        if (!mp_bluetooth_gap_on_set_secret(SECRET_TYPE_OUR_IRK, key, sizeof(key), rand_irk, 16)) {
            // Code that doesn't implement pairing/bonding won't support set/get secret.
            // So they'll just get the default fixed IRK.
            return 0;
        }
        DEBUG_printf("load_irk: Applying new IRK.\n");
        rc = ble_hs_pvcy_set_our_irk(rand_irk);
        if (rc) {
            return rc;
        }
    }

    // Loading an IRK will clear all peer IRKs, so reload them from the store.
    rc = ble_hs_misc_restore_irks();
    return rc;
}
#endif

static void sync_cb(void) {
    int rc;
    (void)rc;

    DEBUG_printf("sync_cb: state=%d\n", mp_bluetooth_nimble_ble_state);

    if (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_WAITING_FOR_SYNC) {
        return;
    }

    #if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
    rc = load_irk();
    assert(rc == 0);
    #endif

    if (has_public_address()) {
        nimble_address_mode = BLE_OWN_ADDR_PUBLIC;
    } else {
        nimble_address_mode = BLE_OWN_ADDR_RANDOM;
        set_random_address(false);
    }

    if (MP_BLUETOOTH_DEFAULT_ATTR_LEN > 20) {
        DEBUG_printf("sync_cb: Setting MTU\n");
        rc = ble_att_set_preferred_mtu(MP_BLUETOOTH_DEFAULT_ATTR_LEN + 3);
        assert(rc == 0);
    }

    mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE;
}

static void gatts_register_cb(struct ble_gatt_register_ctxt *ctxt, void *arg) {
    if (!mp_bluetooth_is_active()) {
        return;
    }
    switch (ctxt->op) {
        case BLE_GATT_REGISTER_OP_SVC:
            // Called when a service is successfully registered.
            DEBUG_printf("gatts_register_cb: svc uuid=%p handle=%d\n", &ctxt->svc.svc_def->uuid, ctxt->svc.handle);
            break;

        case BLE_GATT_REGISTER_OP_CHR:
            // Called when a characteristic is successfully registered.
            DEBUG_printf("gatts_register_cb: chr uuid=%p def_handle=%d val_handle=%d\n", &ctxt->chr.chr_def->uuid, ctxt->chr.def_handle, ctxt->chr.val_handle);

            // Note: We will get this event for the default GAP Service, meaning that we allocate storage for the
            // "device name" and "appearance" characteristics, even though we never see the reads for them.
            // TODO: Possibly check if the service UUID is 0x1801 and ignore?

            // Allocate the gatts_db storage for this characteristic.
            // Although this function is a callback, it's called synchronously from ble_hs_sched_start/ble_gatts_start, so safe to allocate.
            mp_bluetooth_gatts_db_create_entry(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, ctxt->chr.val_handle, MP_BLUETOOTH_DEFAULT_ATTR_LEN);
            break;

        case BLE_GATT_REGISTER_OP_DSC:
            // Called when a descriptor is successfully registered.
            // Note: This is event is not called for the CCCD.
            DEBUG_printf("gatts_register_cb: dsc uuid=%p handle=%d\n", &ctxt->dsc.dsc_def->uuid, ctxt->dsc.handle);

            // See above, safe to alloc.
            mp_bluetooth_gatts_db_create_entry(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, ctxt->dsc.handle, MP_BLUETOOTH_DEFAULT_ATTR_LEN);

            // Unlike characteristics, we have to manually provide a way to get the handle back to the register method.
            *((uint16_t *)ctxt->dsc.dsc_def->arg) = ctxt->dsc.handle;
            break;

        default:
            DEBUG_printf("gatts_register_cb: unknown op %d\n", ctxt->op);
            break;
    }
}

static int commmon_gap_event_cb(struct ble_gap_event *event, void *arg) {
    struct ble_gap_conn_desc desc;

    switch (event->type) {
        #if MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT
        case BLE_GAP_EVENT_NOTIFY_RX: {
            uint16_t ev = event->notify_rx.indication == 0 ? MP_BLUETOOTH_IRQ_GATTC_NOTIFY : MP_BLUETOOTH_IRQ_GATTC_INDICATE;
            gattc_on_data_available(ev, event->notify_rx.conn_handle, event->notify_rx.attr_handle, event->notify_rx.om);
            return 0;
        }
        #endif // MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT

        case BLE_GAP_EVENT_CONN_UPDATE: {
            DEBUG_printf("commmon_gap_event_cb: connection update: status=%d\n", event->conn_update.status);
            if (ble_gap_conn_find(event->conn_update.conn_handle, &desc) == 0) {
                mp_bluetooth_gap_on_connection_update(event->conn_update.conn_handle, desc.conn_itvl, desc.conn_latency, desc.supervision_timeout, event->conn_update.status == 0 ? 0 : 1);
            }
            return 0;
        }

        case BLE_GAP_EVENT_MTU: {
            if (event->mtu.channel_id == BLE_L2CAP_CID_ATT) {
                DEBUG_printf("commmon_gap_event_cb: mtu update: conn_handle=%d cid=%d mtu=%d\n", event->mtu.conn_handle, event->mtu.channel_id, event->mtu.value);
                mp_bluetooth_gatts_on_mtu_exchanged(event->mtu.conn_handle, event->mtu.value);
            }
            return 0;
        }

        case BLE_GAP_EVENT_ENC_CHANGE: {
            DEBUG_printf("commmon_gap_event_cb: enc change: status=%d\n", event->enc_change.status);
            #if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
            if (ble_gap_conn_find(event->enc_change.conn_handle, &desc) == 0) {
                mp_bluetooth_gatts_on_encryption_update(event->conn_update.conn_handle,
                    desc.sec_state.encrypted, desc.sec_state.authenticated,
                    desc.sec_state.bonded, desc.sec_state.key_size);
            }
            #endif
            return 0;
        }

        default:
            DEBUG_printf("commmon_gap_event_cb: unknown type %d\n", event->type);
            return 0;
    }
}

static int central_gap_event_cb(struct ble_gap_event *event, void *arg) {
    DEBUG_printf("central_gap_event_cb: type=%d\n", event->type);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    struct ble_gap_conn_desc desc;
    uint8_t addr[6] = {0};

    switch (event->type) {
        case BLE_GAP_EVENT_CONNECT:
            DEBUG_printf("central_gap_event_cb: connect: status=%d\n", event->connect.status);
            if (event->connect.status == 0) {
                // Connection established.
                ble_gap_conn_find(event->connect.conn_handle, &desc);
                reverse_addr_byte_order(addr, desc.peer_id_addr.val);
                mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_CONNECT, event->connect.conn_handle, desc.peer_id_addr.type, addr);
            } else {
                // Connection failed.
                mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_DISCONNECT, event->connect.conn_handle, 0xff, addr);
            }
            return 0;

        case BLE_GAP_EVENT_DISCONNECT:
            // Disconnect.
            DEBUG_printf("central_gap_event_cb: disconnect: reason=%d\n", event->disconnect.reason);
            reverse_addr_byte_order(addr, event->disconnect.conn.peer_id_addr.val);
            mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_CENTRAL_DISCONNECT, event->disconnect.conn.conn_handle, event->disconnect.conn.peer_id_addr.type, addr);
            return 0;

        case BLE_GAP_EVENT_NOTIFY_TX: {
            DEBUG_printf("central_gap_event_cb: notify_tx: %d %d\n", event->notify_tx.indication, event->notify_tx.status);
            // This event corresponds to either a sent notify/indicate (status == 0), or an indication confirmation (status != 0).
            if (event->notify_tx.indication && event->notify_tx.status != 0) {
                // Map "done/ack" to 0, otherwise pass the status directly.
                mp_bluetooth_gatts_on_indicate_complete(event->notify_tx.conn_handle, event->notify_tx.attr_handle, event->notify_tx.status == BLE_HS_EDONE ? 0 : event->notify_tx.status);
            }
            return 0;
        }

        case BLE_GAP_EVENT_PHY_UPDATE_COMPLETE:
            DEBUG_printf("central_gap_event_cb: phy update: %d\n", event->phy_updated.tx_phy);
            return 0;

        case BLE_GAP_EVENT_REPEAT_PAIRING: {
            // We recognized this peer but the peer doesn't recognize us.
            DEBUG_printf("central_gap_event_cb: repeat pairing: conn_handle=%d\n", event->repeat_pairing.conn_handle);

            // TODO: Consider returning BLE_GAP_REPEAT_PAIRING_IGNORE (and
            // possibly an API to configure this).

            // Delete the old bond.
            int rc = ble_gap_conn_find(event->repeat_pairing.conn_handle, &desc);
            if (rc == 0) {
                ble_store_util_delete_peer(&desc.peer_id_addr);
            }

            // Allow re-pairing.
            return BLE_GAP_REPEAT_PAIRING_RETRY;
        }

        case BLE_GAP_EVENT_PASSKEY_ACTION: {
            DEBUG_printf("central_gap_event_cb: passkey action: conn_handle=%d action=%d num=" UINT_FMT "\n", event->passkey.conn_handle, event->passkey.params.action, (mp_uint_t)event->passkey.params.numcmp);

            #if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
            mp_bluetooth_gap_on_passkey_action(event->passkey.conn_handle, event->passkey.params.action, event->passkey.params.numcmp);
            #endif

            return 0;
        }

        case BLE_GAP_EVENT_SUBSCRIBE: {
            DEBUG_printf("central_gap_event_cb: subscribe: handle=%d, reason=%d notify=%d indicate=%d \n", event->subscribe.attr_handle, event->subscribe.reason, event->subscribe.cur_notify, event->subscribe.cur_indicate);
            return 0;
        }
    }

    return commmon_gap_event_cb(event, arg);
}

#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY

// On ports such as ESP32 where we only implement the bindings, then
// the port must provide these functions.
// But for STM32 / Unix-H4, we provide a default implementation of the
// port-specific functionality.
// TODO: In the future if a port ever needs to customise these functions
// then investigate using MP_WEAK or splitting them out to another .c file.

#include "transport/uart/ble_hci_uart.h"

void mp_bluetooth_nimble_port_hci_init(void) {
    DEBUG_printf("mp_bluetooth_nimble_port_hci_init (nimble default)\n");
    // This calls mp_bluetooth_hci_uart_init (via ble_hci_uart_init --> hal_uart_config --> mp_bluetooth_hci_uart_init).
    ble_hci_uart_init();
    mp_bluetooth_hci_controller_init();
}

void mp_bluetooth_nimble_port_hci_deinit(void) {
    DEBUG_printf("mp_bluetooth_nimble_port_hci_deinit (nimble default)\n");
    mp_bluetooth_hci_controller_deinit();
    mp_bluetooth_hci_uart_deinit();
}

void mp_bluetooth_nimble_port_start(void) {
    DEBUG_printf("mp_bluetooth_nimble_port_start (nimble default)\n");
    // By default, assume port is already running its own background task (e.g. SysTick on STM32).
    // ESP32 runs a FreeRTOS task, Unix has a thread.
}

// Called when the host stop procedure has completed.
static void ble_hs_shutdown_stop_cb(int status, void *arg) {
    (void)status;
    (void)arg;
    mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF;
}

static struct ble_hs_stop_listener ble_hs_shutdown_stop_listener;

void mp_bluetooth_nimble_port_shutdown(void) {
    DEBUG_printf("mp_bluetooth_nimble_port_shutdown (nimble default)\n");
    // By default, just call ble_hs_stop directly and wait for the stack to stop.

    mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_STOPPING;

    ble_hs_stop(&ble_hs_shutdown_stop_listener, ble_hs_shutdown_stop_cb, NULL);

    while (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF) {
        mp_event_wait_indefinite();
    }
}

#endif // !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY

void nimble_reset_gatts_bss(void) {
    // NimBLE assumes that service registration only ever happens once, so
    // we need to reset service registration state from a previous stack startup.
    // These variables are defined in ble_hs.c and are only ever incremented
    // (during service registration) and never reset.
    // See https://github.com/apache/mynewt-nimble/issues/896
    extern uint16_t ble_hs_max_attrs;
    extern uint16_t ble_hs_max_services;
    extern uint16_t ble_hs_max_client_configs;
    ble_hs_max_attrs = 0;
    ble_hs_max_services = 0;
    ble_hs_max_client_configs = 0;
}

int mp_bluetooth_init(void) {
    DEBUG_printf("mp_bluetooth_init\n");
    // Clean up if necessary.
    mp_bluetooth_deinit();

    nimble_reset_gatts_bss();

    mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_STARTING;

    MP_STATE_PORT(bluetooth_nimble_root_pointers) = m_new0(mp_bluetooth_nimble_root_pointers_t, 1);
    mp_bluetooth_gatts_db_create(&MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db);

    #if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
    // Dereference any previous NimBLE mallocs.
    MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
    #endif

    // Allow port (ESP32) to override NimBLE's HCI init.
    // Otherwise default implementation above calls ble_hci_uart_init().
    mp_bluetooth_nimble_port_hci_init();

    // Static initialization is complete, can start processing events.
    mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_WAITING_FOR_SYNC;

    // Initialise NimBLE memory and data structures.
    DEBUG_printf("mp_bluetooth_init: nimble_port_init\n");
    nimble_port_init();

    ble_hs_cfg.reset_cb = reset_cb;
    ble_hs_cfg.sync_cb = sync_cb;
    ble_hs_cfg.gatts_register_cb = gatts_register_cb;
    ble_hs_cfg.store_status_cb = ble_store_util_status_rr;

    #if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
    ble_hs_cfg.sm_our_key_dist = BLE_SM_PAIR_KEY_DIST_ENC | BLE_SM_PAIR_KEY_DIST_ID | BLE_SM_PAIR_KEY_DIST_SIGN;
    ble_hs_cfg.sm_their_key_dist = BLE_SM_PAIR_KEY_DIST_ENC | BLE_SM_PAIR_KEY_DIST_ID | BLE_SM_PAIR_KEY_DIST_SIGN;
    ble_hs_cfg.store_read_cb = ble_secret_store_read;
    ble_hs_cfg.store_write_cb = ble_secret_store_write;
    ble_hs_cfg.store_delete_cb = ble_secret_store_delete;
    #endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING

    // Make sure that the HCI UART and event handling task is running.
    mp_bluetooth_nimble_port_start();

    // Run the scheduler while we wait for stack startup.
    // On non-ringbuffer builds (NimBLE on STM32/Unix) this will also poll the UART and run the event queue.
    mp_uint_t timeout_start_ticks_ms = mp_hal_ticks_ms();
    while (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE) {
        uint32_t elapsed = mp_hal_ticks_ms() - timeout_start_ticks_ms;
        if (elapsed > NIMBLE_STARTUP_TIMEOUT) {
            break;
        }
        mp_event_wait_ms(NIMBLE_STARTUP_TIMEOUT - elapsed);
    }

    if (mp_bluetooth_nimble_ble_state != MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE) {
        mp_bluetooth_deinit();
        return MP_ETIMEDOUT;
    }

    DEBUG_printf("mp_bluetooth_init: starting services\n");

    // By default, just register the default gap/gatt service.
    ble_svc_gap_init();
    ble_svc_gatt_init();
    // The preceding two calls allocate service definitions on the heap,
    // then we must now call gatts_start to register those services
    // and free the heap memory.
    // Otherwise it will be realloc'ed on the next stack startup.
    ble_gatts_start();

    DEBUG_printf("mp_bluetooth_init: ready\n");

    return 0;
}

void mp_bluetooth_deinit(void) {
    DEBUG_printf("mp_bluetooth_deinit %d\n", mp_bluetooth_nimble_ble_state);
    if (mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF) {
        return;
    }

    // Must call ble_hs_stop() in a port-specific way to stop the background
    // task. Default implementation provided above.
    if (mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE) {
        mp_bluetooth_gap_advertise_stop();
        #if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE
        mp_bluetooth_gap_scan_stop();
        #endif

        DEBUG_printf("mp_bluetooth_deinit: starting port shutdown\n");

        mp_bluetooth_nimble_port_shutdown();
        assert(mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF);
    } else {
        mp_bluetooth_nimble_ble_state = MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF;
    }

    // Shutdown the HCI controller.
    mp_bluetooth_nimble_port_hci_deinit();

    MP_STATE_PORT(bluetooth_nimble_root_pointers) = NULL;

    #if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
    // Dereference any previous NimBLE mallocs.
    MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
    #endif

    DEBUG_printf("mp_bluetooth_deinit: shut down\n");
}

bool mp_bluetooth_is_active(void) {
    return mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_ACTIVE;
}

void mp_bluetooth_get_current_address(uint8_t *addr_type, uint8_t *addr) {
    if (!mp_bluetooth_is_active()) {
        mp_raise_OSError(ERRNO_BLUETOOTH_NOT_ACTIVE);
    }

    uint8_t addr_le[6];

    switch (nimble_address_mode) {
        case BLE_OWN_ADDR_PUBLIC:
            *addr_type = BLE_ADDR_PUBLIC;
            break;
        case BLE_OWN_ADDR_RANDOM:
            *addr_type = BLE_ADDR_RANDOM;
            break;
        case BLE_OWN_ADDR_RPA_PUBLIC_DEFAULT:
        case BLE_OWN_ADDR_RPA_RANDOM_DEFAULT:
        default:
            // TODO: If RPA/NRPA in use, get the current value.
            // Is this even possible in NimBLE?
            mp_raise_OSError(MP_EINVAL);
    }

    int rc = ble_hs_id_copy_addr(*addr_type, addr_le, NULL);
    if (rc != 0) {
        mp_raise_OSError(MP_EINVAL);
    }
    reverse_addr_byte_order(addr, addr_le);
}

void mp_bluetooth_set_address_mode(uint8_t addr_mode) {
    if (!mp_bluetooth_is_active()) {
        mp_raise_OSError(ERRNO_BLUETOOTH_NOT_ACTIVE);
    }
    switch (addr_mode) {
        case MP_BLUETOOTH_ADDRESS_MODE_PUBLIC:
            if (!has_public_address()) {
                // No public address available.
                mp_raise_OSError(MP_EINVAL);
            }
            nimble_address_mode = BLE_OWN_ADDR_PUBLIC;
            break;
        case MP_BLUETOOTH_ADDRESS_MODE_RANDOM:
            // Generate an static random address.
            set_random_address(false);
            nimble_address_mode = BLE_OWN_ADDR_RANDOM;
            break;
        case MP_BLUETOOTH_ADDRESS_MODE_RPA:
            if (has_public_address()) {
                nimble_address_mode = BLE_OWN_ADDR_RPA_PUBLIC_DEFAULT;
            } else {
                // Generate an static random address to use as the identity address.
                set_random_address(false);
                nimble_address_mode = BLE_OWN_ADDR_RPA_RANDOM_DEFAULT;
            }
            break;
        case MP_BLUETOOTH_ADDRESS_MODE_NRPA:
            // Generate an NRPA.
            set_random_address(true);
            // In NimBLE, NRPA is treated like a static random address that happens to be an NRPA.
            nimble_address_mode = BLE_OWN_ADDR_RANDOM;
            break;
    }
}

#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
void mp_bluetooth_set_bonding(bool enabled) {
    ble_hs_cfg.sm_bonding = enabled;
}

void mp_bluetooth_set_mitm_protection(bool enabled) {
    ble_hs_cfg.sm_mitm = enabled;
}

void mp_bluetooth_set_le_secure(bool enabled) {
    ble_hs_cfg.sm_sc = enabled;
}

void mp_bluetooth_set_io_capability(uint8_t capability) {
    ble_hs_cfg.sm_io_cap = capability;
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING

size_t mp_bluetooth_gap_get_device_name(const uint8_t **buf) {
    const char *name = ble_svc_gap_device_name();
    *buf = (const uint8_t *)name;
    return strlen(name);
}

int mp_bluetooth_gap_set_device_name(const uint8_t *buf, size_t len) {
    char tmp_buf[MYNEWT_VAL(BLE_SVC_GAP_DEVICE_NAME_MAX_LENGTH) + 1];
    if (len + 1 > sizeof(tmp_buf)) {
        return MP_EINVAL;
    }
    memcpy(tmp_buf, buf, len);
    tmp_buf[len] = '\0';
    return ble_hs_err_to_errno(ble_svc_gap_device_name_set(tmp_buf));
}

int mp_bluetooth_gap_advertise_start(bool connectable, int32_t interval_us, const uint8_t *adv_data, size_t adv_data_len, const uint8_t *sr_data, size_t sr_data_len) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }

    mp_bluetooth_gap_advertise_stop();

    int ret;
    if (adv_data) {
        ret = ble_gap_adv_set_data(adv_data, adv_data_len);
        if (ret != 0) {
            return ble_hs_err_to_errno(ret);
        }
    }

    if (sr_data) {
        ret = ble_gap_adv_rsp_set_data(sr_data, sr_data_len);
        if (ret != 0) {
            return ble_hs_err_to_errno(ret);
        }
    }

    struct ble_gap_adv_params adv_params = {
        .conn_mode = connectable ? BLE_GAP_CONN_MODE_UND : BLE_GAP_CONN_MODE_NON,
        .disc_mode = BLE_GAP_DISC_MODE_GEN,
        .itvl_min = interval_us / BLE_HCI_ADV_ITVL, // convert to 625us units.
        .itvl_max = interval_us / BLE_HCI_ADV_ITVL,
        .channel_map = 7, // all 3 channels.
    };

    ret = ble_gap_adv_start(nimble_address_mode, NULL, BLE_HS_FOREVER, &adv_params, central_gap_event_cb, NULL);
    if (ret == 0) {
        return 0;
    }
    DEBUG_printf("ble_gap_adv_start: %d\n", ret);

    return ble_hs_err_to_errno(ret);
}

void mp_bluetooth_gap_advertise_stop(void) {
    if (ble_gap_adv_active()) {
        ble_gap_adv_stop();
    }
}

static int characteristic_access_cb(uint16_t conn_handle, uint16_t value_handle, struct ble_gatt_access_ctxt *ctxt, void *arg) {
    DEBUG_printf("characteristic_access_cb: conn_handle=%u value_handle=%u op=%u\n", conn_handle, value_handle, ctxt->op);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    mp_bluetooth_gatts_db_entry_t *entry;
    switch (ctxt->op) {
        case BLE_GATT_ACCESS_OP_READ_CHR:
        case BLE_GATT_ACCESS_OP_READ_DSC: {
            DEBUG_printf("write for %d %d (op=%d)\n", conn_handle, value_handle, ctxt->op);
            // Allow Python code to override (by using gatts_write), or deny (by returning false) the read.
            // Note this will be a no-op if the ringbuffer implementation is being used (i.e. the stack isn't
            // run in the scheduler). The ringbuffer is not used on STM32 and Unix-H4 only.
            int req = mp_bluetooth_gatts_on_read_request(conn_handle, value_handle);
            if (req) {
                return req;
            }

            entry = mp_bluetooth_gatts_db_lookup(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle);
            if (!entry) {
                return BLE_ATT_ERR_ATTR_NOT_FOUND;
            }

            if (os_mbuf_append(ctxt->om, entry->data, entry->data_len)) {
                return BLE_ATT_ERR_INSUFFICIENT_RES;
            }

            return 0;
        }
        case BLE_GATT_ACCESS_OP_WRITE_CHR:
        case BLE_GATT_ACCESS_OP_WRITE_DSC:
            DEBUG_printf("write for %d %d (op=%d)\n", conn_handle, value_handle, ctxt->op);
            entry = mp_bluetooth_gatts_db_lookup(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle);
            if (!entry) {
                return BLE_ATT_ERR_ATTR_NOT_FOUND;
            }

            size_t offset = 0;
            if (entry->append) {
                offset = entry->data_len;
            }
            entry->data_len = MIN(entry->data_alloc, OS_MBUF_PKTLEN(ctxt->om) + offset);
            os_mbuf_copydata(ctxt->om, 0, entry->data_len - offset, entry->data + offset);

            // TODO: Consider failing with BLE_ATT_ERR_INSUFFICIENT_RES if the buffer is full.

            mp_bluetooth_gatts_on_write(conn_handle, value_handle);

            return 0;
    }
    return BLE_ATT_ERR_UNLIKELY;
}

int mp_bluetooth_gatts_register_service_begin(bool append) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }

    if (append) {
        // Don't support append yet (modbluetooth.c doesn't support it yet anyway).
        // TODO: This should be possible with NimBLE.
        return MP_EOPNOTSUPP;
    }

    nimble_reset_gatts_bss();

    int ret = ble_gatts_reset();
    if (ret != 0) {
        return ble_hs_err_to_errno(ret);
    }

    // Reset the gatt characteristic value db.
    mp_bluetooth_gatts_db_reset(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db);

    // By default, just register the default gap/gatt service.
    ble_svc_gap_init();
    ble_svc_gatt_init();

    // Unref any previous service definitions.
    for (size_t i = 0; i < MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services; ++i) {
        MP_STATE_PORT(bluetooth_nimble_root_pointers)->services[i] = NULL;
    }
    MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services = 0;

    return 0;
}

int mp_bluetooth_gatts_register_service_end(void) {
    int ret = ble_gatts_start();
    if (ret != 0) {
        return ble_hs_err_to_errno(ret);
    }

    return 0;
}

int mp_bluetooth_gatts_register_service(mp_obj_bluetooth_uuid_t *service_uuid, mp_obj_bluetooth_uuid_t **characteristic_uuids, uint16_t *characteristic_flags, mp_obj_bluetooth_uuid_t **descriptor_uuids, uint16_t *descriptor_flags, uint8_t *num_descriptors, uint16_t *handles, size_t num_characteristics) {
    if (MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services == MP_BLUETOOTH_NIMBLE_MAX_SERVICES) {
        return MP_E2BIG;
    }
    size_t handle_index = 0;
    size_t descriptor_index = 0;

    struct ble_gatt_chr_def *characteristics = m_new(struct ble_gatt_chr_def, num_characteristics + 1);
    for (size_t i = 0; i < num_characteristics; ++i) {
        characteristics[i].uuid = create_nimble_uuid(characteristic_uuids[i], NULL);
        characteristics[i].access_cb = characteristic_access_cb;
        characteristics[i].arg = NULL;
        // NimBLE flags match the MP_BLUETOOTH_CHARACTERISTIC_FLAG_ ones exactly (including the security/privacy options).
        characteristics[i].flags = characteristic_flags[i];
        characteristics[i].min_key_size = 0;
        characteristics[i].val_handle = &handles[handle_index];
        ++handle_index;

        if (num_descriptors[i] == 0) {
            characteristics[i].descriptors = NULL;
        } else {
            struct ble_gatt_dsc_def *descriptors = m_new(struct ble_gatt_dsc_def, num_descriptors[i] + 1);

            for (size_t j = 0; j < num_descriptors[i]; ++j) {
                descriptors[j].uuid = create_nimble_uuid(descriptor_uuids[descriptor_index], NULL);
                descriptors[j].access_cb = characteristic_access_cb;
                // NimBLE doesn't support security/privacy options on descriptors.
                uint8_t desc_att_flags = 0;
                if (descriptor_flags[descriptor_index] & MP_BLUETOOTH_CHARACTERISTIC_FLAG_READ) {
                    desc_att_flags |= BLE_ATT_F_READ;
                }
                if (descriptor_flags[descriptor_index] & (MP_BLUETOOTH_CHARACTERISTIC_FLAG_WRITE | MP_BLUETOOTH_CHARACTERISTIC_FLAG_WRITE_NO_RESPONSE)) {
                    desc_att_flags |= BLE_ATT_F_WRITE;
                }
                descriptors[j].att_flags = desc_att_flags;
                descriptors[j].min_key_size = 0;
                // Unlike characteristic, Nimble doesn't provide an automatic way to remember the handle, so use the arg.
                descriptors[j].arg = &handles[handle_index];
                ++descriptor_index;
                ++handle_index;
            }
            descriptors[num_descriptors[i]].uuid = NULL; // no more descriptors

            characteristics[i].descriptors = descriptors;
        }
    }
    characteristics[num_characteristics].uuid = NULL; // no more characteristics

    struct ble_gatt_svc_def *service = m_new(struct ble_gatt_svc_def, 2);
    service[0].type = BLE_GATT_SVC_TYPE_PRIMARY;
    service[0].uuid = create_nimble_uuid(service_uuid, NULL);
    service[0].includes = NULL;
    service[0].characteristics = characteristics;
    service[1].type = 0; // no more services

    MP_STATE_PORT(bluetooth_nimble_root_pointers)->services[MP_STATE_PORT(bluetooth_nimble_root_pointers)->n_services++] = service;

    // Note: advertising must be stopped for gatts registration to work

    int ret = ble_gatts_count_cfg(service);
    if (ret != 0) {
        return ble_hs_err_to_errno(ret);
    }

    ret = ble_gatts_add_svcs(service);
    if (ret != 0) {
        return ble_hs_err_to_errno(ret);
    }

    return 0;
}

int mp_bluetooth_gap_disconnect(uint16_t conn_handle) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    return ble_hs_err_to_errno(ble_gap_terminate(conn_handle, BLE_ERR_REM_USER_CONN_TERM));
}

int mp_bluetooth_gatts_read(uint16_t value_handle, const uint8_t **value, size_t *value_len) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    return mp_bluetooth_gatts_db_read(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle, value, value_len);
}

int mp_bluetooth_gatts_write(uint16_t value_handle, const uint8_t *value, size_t value_len, bool send_update) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    int err = mp_bluetooth_gatts_db_write(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle, value, value_len);
    if (err == 0 && send_update) {
        ble_gatts_chr_updated(value_handle);
    }
    return err;
}

int mp_bluetooth_gatts_notify_indicate(uint16_t conn_handle, uint16_t value_handle, int gatts_op, const uint8_t *value, size_t value_len) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }

    int err = BLE_HS_EINVAL;

    // NULL om in the _custom methods means "use DB value" (NimBLE will call
    // back into mp_bluetooth_gatts_read for us).
    struct os_mbuf *om = NULL;

    if (value) {
        om = ble_hs_mbuf_from_flat(value, value_len);
        if (om == NULL) {
            return MP_ENOMEM;
        }
    }

    // Note: Confusingly, Nimble's notify/notify_custom and indicate/indicate_custom
    // are "gattc" functions (even though they're used by peripherals, i.e. gatt servers).
    // See https://www.mail-archive.com/dev@mynewt.apache.org/msg01293.html

    switch (gatts_op) {
        case MP_BLUETOOTH_GATTS_OP_NOTIFY:
            err = ble_gattc_notify_custom(conn_handle, value_handle, om);
            break;
        case MP_BLUETOOTH_GATTS_OP_INDICATE:
            // This will raise BLE_GAP_EVENT_NOTIFY_TX with a status when it is
            // acknowledged (or timeout/error).
            err = ble_gattc_indicate_custom(conn_handle, value_handle, om);
            break;
    }

    return ble_hs_err_to_errno(err);
}

int mp_bluetooth_gatts_set_buffer(uint16_t value_handle, size_t len, bool append) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    return mp_bluetooth_gatts_db_resize(MP_STATE_PORT(bluetooth_nimble_root_pointers)->gatts_db, value_handle, len, append);
}

int mp_bluetooth_get_preferred_mtu(void) {
    if (!mp_bluetooth_is_active()) {
        mp_raise_OSError(ERRNO_BLUETOOTH_NOT_ACTIVE);
    }
    return ble_att_preferred_mtu();
}

int mp_bluetooth_set_preferred_mtu(uint16_t mtu) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    if (ble_att_set_preferred_mtu(mtu)) {
        return MP_EINVAL;
    }
    return 0;
}

#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING
int mp_bluetooth_gap_pair(uint16_t conn_handle) {
    DEBUG_printf("mp_bluetooth_gap_pair: conn_handle=%d\n", conn_handle);
    return ble_hs_err_to_errno(ble_gap_security_initiate(conn_handle));
}

int mp_bluetooth_gap_passkey(uint16_t conn_handle, uint8_t action, mp_int_t passkey) {
    struct ble_sm_io io = {0};

    switch (action) {
        case MP_BLUETOOTH_PASSKEY_ACTION_INPUT: {
            io.passkey = passkey;
            break;
        }
        case MP_BLUETOOTH_PASSKEY_ACTION_DISPLAY: {
            io.passkey = passkey;
            break;
        }
        case MP_BLUETOOTH_PASSKEY_ACTION_NUMERIC_COMPARISON: {
            io.numcmp_accept = passkey != 0;
            break;
        }
        default: {
            return MP_EINVAL;
        }
    }

    io.action = action;

    DEBUG_printf("mp_bluetooth_gap_passkey: injecting IO: conn_handle=%d, action=%d, passkey=" UINT_FMT ", numcmp_accept=%d\n", conn_handle, io.action, (mp_uint_t)io.passkey, io.numcmp_accept);
    return ble_hs_err_to_errno(ble_sm_inject_io(conn_handle, &io));
}
#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING

#if MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE

static int gap_scan_cb(struct ble_gap_event *event, void *arg) {
    DEBUG_printf("gap_scan_cb: event=%d type=%d\n", event->type, event->type == BLE_GAP_EVENT_DISC ? event->disc.event_type : -1);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }

    if (event->type == BLE_GAP_EVENT_DISC_COMPLETE) {
        mp_bluetooth_gap_on_scan_complete();
        return 0;
    }

    if (event->type != BLE_GAP_EVENT_DISC) {
        return 0;
    }

    uint8_t addr[6];
    reverse_addr_byte_order(addr, event->disc.addr.val);
    mp_bluetooth_gap_on_scan_result(event->disc.addr.type, addr, event->disc.event_type, event->disc.rssi, event->disc.data, event->disc.length_data);

    return 0;
}

int mp_bluetooth_gap_scan_start(int32_t duration_ms, int32_t interval_us, int32_t window_us, bool active_scan) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    if (duration_ms == 0) {
        duration_ms = BLE_HS_FOREVER;
    }
    struct ble_gap_disc_params discover_params = {
        .itvl = MAX(BLE_HCI_SCAN_ITVL_MIN, MIN(BLE_HCI_SCAN_ITVL_MAX, interval_us / BLE_HCI_SCAN_ITVL)),
        .window = MAX(BLE_HCI_SCAN_WINDOW_MIN, MIN(BLE_HCI_SCAN_WINDOW_MAX, window_us / BLE_HCI_SCAN_ITVL)),
        .filter_policy = BLE_HCI_CONN_FILT_NO_WL,
        .limited = 0,
        .passive = active_scan ? 0 : 1,
        .filter_duplicates = 0,
    };
    int err = ble_gap_disc(nimble_address_mode, duration_ms, &discover_params, gap_scan_cb, NULL);
    return ble_hs_err_to_errno(err);
}

int mp_bluetooth_gap_scan_stop(void) {
    DEBUG_printf("mp_bluetooth_gap_scan_stop\n");
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    if (!ble_gap_disc_active()) {
        return 0;
    }
    int err = ble_gap_disc_cancel();
    if (err == 0) {
        mp_bluetooth_gap_on_scan_complete();
        return 0;
    }
    return ble_hs_err_to_errno(err);
}

// Central role: GAP events for a connected peripheral.
static int peripheral_gap_event_cb(struct ble_gap_event *event, void *arg) {
    DEBUG_printf("peripheral_gap_event_cb: event=%d\n", event->type);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    struct ble_gap_conn_desc desc;
    uint8_t addr[6] = {0};

    switch (event->type) {
        case BLE_GAP_EVENT_CONNECT:
            DEBUG_printf("peripheral_gap_event_cb: status=%d\n", event->connect.status);
            if (event->connect.status == 0) {
                // Connection established.
                ble_gap_conn_find(event->connect.conn_handle, &desc);
                reverse_addr_byte_order(addr, desc.peer_id_addr.val);
                mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_CONNECT, event->connect.conn_handle, desc.peer_id_addr.type, addr);
            } else {
                // Connection failed.
                mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_DISCONNECT, event->connect.conn_handle, 0xff, addr);
            }
            return 0;

        case BLE_GAP_EVENT_DISCONNECT:
            // Disconnect.
            DEBUG_printf("peripheral_gap_event_cb: reason=%d\n", event->disconnect.reason);
            reverse_addr_byte_order(addr, event->disconnect.conn.peer_id_addr.val);
            mp_bluetooth_gap_on_connected_disconnected(MP_BLUETOOTH_IRQ_PERIPHERAL_DISCONNECT, event->disconnect.conn.conn_handle, event->disconnect.conn.peer_id_addr.type, addr);
            return 0;
    }

    return commmon_gap_event_cb(event, arg);
}

int mp_bluetooth_gap_peripheral_connect(uint8_t addr_type, const uint8_t *addr, int32_t duration_ms, int32_t min_conn_interval_us, int32_t max_conn_interval_us) {
    DEBUG_printf("mp_bluetooth_gap_peripheral_connect\n");
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    if (ble_gap_disc_active()) {
        mp_bluetooth_gap_scan_stop();
    }

    uint16_t conn_interval_min = min_conn_interval_us ? min_conn_interval_us / BLE_HCI_CONN_ITVL : BLE_GAP_INITIAL_CONN_ITVL_MIN;
    uint16_t conn_interval_max = max_conn_interval_us ? max_conn_interval_us / BLE_HCI_CONN_ITVL : BLE_GAP_INITIAL_CONN_ITVL_MAX;

    const struct ble_gap_conn_params params = {
        .scan_itvl = 0x0010,
        .scan_window = 0x0010,
        .itvl_min = conn_interval_min,
        .itvl_max = conn_interval_max,
        .latency = BLE_GAP_INITIAL_CONN_LATENCY,
        .supervision_timeout = BLE_GAP_INITIAL_SUPERVISION_TIMEOUT,
        .min_ce_len = BLE_GAP_INITIAL_CONN_MIN_CE_LEN,
        .max_ce_len = BLE_GAP_INITIAL_CONN_MAX_CE_LEN,
    };

    ble_addr_t addr_nimble = create_nimble_addr(addr_type, addr);
    int err = ble_gap_connect(nimble_address_mode, &addr_nimble, duration_ms, &params, &peripheral_gap_event_cb, NULL);
    return ble_hs_err_to_errno(err);
}

int mp_bluetooth_gap_peripheral_connect_cancel(void) {
    DEBUG_printf("mp_bluetooth_gap_peripheral_connect_cancel\n");
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    int err = ble_gap_conn_cancel();
    return ble_hs_err_to_errno(err);
}

static int ble_gattc_service_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_svc *service, void *arg) {
    DEBUG_printf("ble_gattc_service_cb: conn_handle=%d status=%d start_handle=%d\n", conn_handle, error->status, service ? service->start_handle : -1);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    if (error->status == 0) {
        mp_obj_bluetooth_uuid_t service_uuid = create_mp_uuid(&service->uuid);
        mp_bluetooth_gattc_on_primary_service_result(conn_handle, service->start_handle, service->end_handle, &service_uuid);
    } else {
        mp_bluetooth_gattc_on_discover_complete(MP_BLUETOOTH_IRQ_GATTC_SERVICE_DONE, conn_handle, error->status == BLE_HS_EDONE ? 0 : error->status);
    }
    return 0;
}

#endif // MICROPY_PY_BLUETOOTH_ENABLE_CENTRAL_MODE

#if MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT

static void gattc_on_data_available(uint8_t event, uint16_t conn_handle, uint16_t value_handle, const struct os_mbuf *om) {
    // When the HCI data for an ATT payload arrives, the L2CAP channel will
    // buffer it into its receive buffer. We set BLE_L2CAP_JOIN_RX_FRAGS=1 in
    // syscfg.h so it should be rare that the mbuf is fragmented, but we do need
    // to be able to handle it. We pass all the fragments up to modbluetooth.c
    // which will create a temporary buffer on the MicroPython heap if necessary
    // to re-assemble them.

    // Count how many links are in the mbuf chain.
    size_t n = 0;
    const struct os_mbuf *elem = om;
    while (elem) {
        n += 1;
        elem = SLIST_NEXT(elem, om_next);
    }

    // Grab data pointers and lengths for each of the links.
    const uint8_t **data = mp_local_alloc(sizeof(uint8_t *) * n);
    uint16_t *data_len = mp_local_alloc(sizeof(uint16_t) * n);
    for (size_t i = 0; i < n; ++i) {
        data[i] = OS_MBUF_DATA(om, const uint8_t *);
        data_len[i] = om->om_len;
        om = SLIST_NEXT(om, om_next);
    }

    // Pass all the fragments together.
    mp_bluetooth_gattc_on_data_available(event, conn_handle, value_handle, data, data_len, n);

    mp_local_free(data_len);
    mp_local_free(data);
}

int mp_bluetooth_gattc_discover_primary_services(uint16_t conn_handle, const mp_obj_bluetooth_uuid_t *uuid) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    int err;
    if (uuid) {
        ble_uuid_any_t nimble_uuid;
        create_nimble_uuid(uuid, &nimble_uuid);
        err = ble_gattc_disc_svc_by_uuid(conn_handle, &nimble_uuid.u, &ble_gattc_service_cb, NULL);
    } else {
        err = ble_gattc_disc_all_svcs(conn_handle, &ble_gattc_service_cb, NULL);
    }
    return ble_hs_err_to_errno(err);
}

static bool match_char_uuid(const mp_obj_bluetooth_uuid_t *filter_uuid, const ble_uuid_any_t *result_uuid) {
    if (!filter_uuid) {
        return true;
    }
    ble_uuid_any_t filter_uuid_nimble;
    create_nimble_uuid(filter_uuid, &filter_uuid_nimble);
    return ble_uuid_cmp(&result_uuid->u, &filter_uuid_nimble.u) == 0;
}

static int ble_gattc_characteristic_cb(uint16_t conn_handle, const struct ble_gatt_error *error, const struct ble_gatt_chr *characteristic, void *arg) {
    DEBUG_printf("ble_gattc_characteristic_cb: conn_handle=%d status=%d def_handle=%d val_handle=%d\n", conn_handle, error->status, characteristic ? characteristic->def_handle : -1, characteristic ? characteristic->val_handle : -1);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }

    mp_bluetooth_nimble_pending_characteristic_t *pending = &MP_STATE_PORT(bluetooth_nimble_root_pointers)->pending_char_result;
    if (pending->ready) {
        // If there's a pending characteristic, we now know what it's end handle is, report it up to modbluetooth.
        pending->ready = 0;

        // The end handle will either be the end of the query range (there are
        // no more results), or one before the current result's definition
        // handle.
        uint16_t end_handle = MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle;
        if (error->status == 0) {
            end_handle = characteristic->def_handle - 1;
        }

        // Assume same conn_handle because we're limiting to a single active discovery.
        mp_bluetooth_gattc_on_characteristic_result(conn_handle, pending->value_handle, end_handle, pending->properties, &pending->uuid);
    }

    if (error->status == 0) {
        // If there's no filter, or the filter matches, then save this result.
        if (match_char_uuid(MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_filter_uuid, &characteristic->uuid)) {
            pending->value_handle = characteristic->val_handle;
            pending->properties = characteristic->properties;
            pending->uuid = create_mp_uuid(&characteristic->uuid);
            pending->ready = 1;
        }
    } else {
        // Finished (or failed). Allow another characteristic discovery to start.
        MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle = 0;

        // Report completion.
        mp_bluetooth_gattc_on_discover_complete(MP_BLUETOOTH_IRQ_GATTC_CHARACTERISTIC_DONE, conn_handle, error->status == BLE_HS_EDONE ? 0 : error->status);
    }
    return 0;
}

int mp_bluetooth_gattc_discover_characteristics(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle, const mp_obj_bluetooth_uuid_t *uuid) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }

    // The implementation of characteristic discovery queries for all
    // characteristics, and then UUID filtering is applied by NimBLE on each
    // characteristic. Unfortunately, each characteristic result does not
    // include its end handle, so you need to know the next characteristic
    // before you can raise the previous one to modbluetooth. But if we let
    // NimBLE do the filtering, then we don't necessarily see the next one.
    // So we make NimBLE return all results and do the filtering here instead.

    if (MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle) {
        // Only allow a single discovery (otherwise we'd need to track a
        // pending characteristic per conn handle).
        return MP_EBUSY;
    }

    // Set the uuid filter (if any). This needs to be a root pointer,
    // otherwise we'd use ble_gattc_disc_all_chrs's arg param.
    MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_filter_uuid = uuid;

    int err = ble_gattc_disc_all_chrs(conn_handle, start_handle, end_handle, &ble_gattc_characteristic_cb, NULL);
    if (!err) {
        // Lock out concurrent characteristic discovery.
        MP_STATE_PORT(bluetooth_nimble_root_pointers)->char_disc_end_handle = end_handle;
    }
    return ble_hs_err_to_errno(err);
}

static int ble_gattc_descriptor_cb(uint16_t conn_handle, const struct ble_gatt_error *error, uint16_t characteristic_val_handle, const struct ble_gatt_dsc *descriptor, void *arg) {
    DEBUG_printf("ble_gattc_descriptor_cb: conn_handle=%d status=%d chr_handle=%d dsc_handle=%d\n", conn_handle, error->status, characteristic_val_handle, descriptor ? descriptor->handle : -1);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    if (error->status == 0) {
        mp_obj_bluetooth_uuid_t descriptor_uuid = create_mp_uuid(&descriptor->uuid);
        mp_bluetooth_gattc_on_descriptor_result(conn_handle, descriptor->handle, &descriptor_uuid);
    } else {
        mp_bluetooth_gattc_on_discover_complete(MP_BLUETOOTH_IRQ_GATTC_DESCRIPTOR_DONE, conn_handle, error->status == BLE_HS_EDONE ? 0 : error->status);
    }
    return 0;
}

int mp_bluetooth_gattc_discover_descriptors(uint16_t conn_handle, uint16_t start_handle, uint16_t end_handle) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    int err = ble_gattc_disc_all_dscs(conn_handle, start_handle, end_handle, &ble_gattc_descriptor_cb, NULL);
    return ble_hs_err_to_errno(err);
}

static int ble_gattc_attr_read_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg) {
    uint16_t handle = attr ? attr->handle : (error ? error->att_handle : 0xffff);
    DEBUG_printf("ble_gattc_attr_read_cb: conn_handle=%d status=%d handle=%d\n", conn_handle, error->status, handle);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    if (error->status == 0) {
        gattc_on_data_available(MP_BLUETOOTH_IRQ_GATTC_READ_RESULT, conn_handle, attr->handle, attr->om);
    }
    mp_bluetooth_gattc_on_read_write_status(MP_BLUETOOTH_IRQ_GATTC_READ_DONE, conn_handle, handle, error->status);
    return 0;
}

// Initiate read of a value from the remote peripheral.
int mp_bluetooth_gattc_read(uint16_t conn_handle, uint16_t value_handle) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    int err = ble_gattc_read(conn_handle, value_handle, &ble_gattc_attr_read_cb, NULL);
    return ble_hs_err_to_errno(err);
}

static int ble_gattc_attr_write_cb(uint16_t conn_handle, const struct ble_gatt_error *error, struct ble_gatt_attr *attr, void *arg) {
    uint16_t handle = attr ? attr->handle : (error ? error->att_handle : 0xffff);
    DEBUG_printf("ble_gattc_attr_write_cb: conn_handle=%d status=%d handle=%d\n", conn_handle, error->status, handle);
    if (!mp_bluetooth_is_active()) {
        return 0;
    }
    mp_bluetooth_gattc_on_read_write_status(MP_BLUETOOTH_IRQ_GATTC_WRITE_DONE, conn_handle, handle, error->status);
    return 0;
}

// Write the value to the remote peripheral.
int mp_bluetooth_gattc_write(uint16_t conn_handle, uint16_t value_handle, const uint8_t *value, size_t value_len, unsigned int mode) {
    if (!mp_bluetooth_is_active()) {
        return ERRNO_BLUETOOTH_NOT_ACTIVE;
    }
    int err;
    if (mode == MP_BLUETOOTH_WRITE_MODE_NO_RESPONSE) {
        err = ble_gattc_write_no_rsp_flat(conn_handle, value_handle, value, value_len);
    } else if (mode == MP_BLUETOOTH_WRITE_MODE_WITH_RESPONSE) {
        err = ble_gattc_write_flat(conn_handle, value_handle, value, value_len, &ble_gattc_attr_write_cb, NULL);
    } else {
        err = BLE_HS_EINVAL;
    }
    return ble_hs_err_to_errno(err);
}

int mp_bluetooth_gattc_exchange_mtu(uint16_t conn_handle) {
    DEBUG_printf("mp_bluetooth_exchange_mtu: conn_handle=%d mtu=%d\n", conn_handle, ble_att_preferred_mtu());

    // Using NULL callback (we'll get notified in gap_event_cb instead).
    return ble_hs_err_to_errno(ble_gattc_exchange_mtu(conn_handle, NULL, NULL));
}

#endif // MICROPY_PY_BLUETOOTH_ENABLE_GATT_CLIENT

#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
static void unstall_l2cap_channel(void);
#endif

void mp_bluetooth_nimble_sent_hci_packet(void) {
    #if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS
    if (os_msys_num_free() >= os_msys_count() * 3 / 4) {
        unstall_l2cap_channel();
    }
    #endif
}

#if MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS

// Fortunately NimBLE uses mbuf chains correctly with L2CAP COC (rather than
// accessing the mbuf internals directly), so we can use a small block size to
// avoid excessive fragmentation and rely on them chaining together for larger
// payloads.
#define L2CAP_BUF_BLOCK_SIZE (128)

// This gives us enough room to have one MTU-size transmit buffer and two
// MTU-sized receive buffers. Note that we use the local MTU to calculate
// the buffer size. This means that if the peer MTU is larger, then
// there might not be enough space in the pool to send a full peer-MTU
// sized payload and mp_bluetooth_l2cap_send will return ENOMEM.
#define L2CAP_BUF_SIZE_MTUS_PER_CHANNEL (3)

typedef struct _mp_bluetooth_nimble_l2cap_channel_t {
    struct ble_l2cap_chan *chan;
    struct os_mbuf_pool sdu_mbuf_pool;
    struct os_mempool sdu_mempool;
    struct os_mbuf *rx_pending;
    bool irq_in_progress;
    bool mem_stalled;
    uint16_t mtu;
    os_membuf_t sdu_mem[];
} mp_bluetooth_nimble_l2cap_channel_t;

static void destroy_l2cap_channel();
static int l2cap_channel_event(struct ble_l2cap_event *event, void *arg);
static mp_bluetooth_nimble_l2cap_channel_t *get_l2cap_channel_for_conn_cid(uint16_t conn_handle, uint16_t cid);
static int create_l2cap_channel(uint16_t mtu, mp_bluetooth_nimble_l2cap_channel_t **out);

static void destroy_l2cap_channel() {
    // Only free the l2cap channel if we're the one that initiated the connection.
    // Listeners continue listening on the same channel.
    if (!MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_listening) {
        MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan = NULL;
    }
}

static void unstall_l2cap_channel(void) {
    // Whenever we send an HCI packet and the sys mempool is now less than 1/4 full,
    // we can un-stall the L2CAP channel if it was marked as "mem_stalled" by
    // mp_bluetooth_l2cap_send. (This happens if the pool is half-empty).
    mp_bluetooth_nimble_l2cap_channel_t *chan = MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan;
    if (!chan || !chan->mem_stalled) {
        return;
    }
    DEBUG_printf("unstall_l2cap_channel: count %d, free: %d\n", os_msys_count(), os_msys_num_free());
    chan->mem_stalled = false;
    mp_bluetooth_on_l2cap_send_ready(chan->chan->conn_handle, chan->chan->scid, 0);
}

static int l2cap_channel_event(struct ble_l2cap_event *event, void *arg) {
    DEBUG_printf("l2cap_channel_event: type=%d\n", event->type);
    mp_bluetooth_nimble_l2cap_channel_t *chan = (mp_bluetooth_nimble_l2cap_channel_t *)arg;
    struct ble_l2cap_chan_info info;

    switch (event->type) {
        case BLE_L2CAP_EVENT_COC_CONNECTED: {
            DEBUG_printf("l2cap_channel_event: connect: conn_handle=%d status=%d\n", event->connect.conn_handle, event->connect.status);
            chan->chan = event->connect.chan;

            ble_l2cap_get_chan_info(event->connect.chan, &info);
            if (event->connect.status == 0) {
                mp_bluetooth_on_l2cap_connect(event->connect.conn_handle, info.scid, info.psm, info.our_coc_mtu, info.peer_coc_mtu);
            } else {
                mp_bluetooth_on_l2cap_disconnect(event->connect.conn_handle, info.scid, info.psm, event->connect.status);
                destroy_l2cap_channel();
            }
            break;
        }
        case BLE_L2CAP_EVENT_COC_DISCONNECTED: {
            DEBUG_printf("l2cap_channel_event: disconnect: conn_handle=%d\n", event->disconnect.conn_handle);
            ble_l2cap_get_chan_info(event->disconnect.chan, &info);
            mp_bluetooth_on_l2cap_disconnect(event->disconnect.conn_handle, info.scid, info.psm, 0);
            destroy_l2cap_channel();
            break;
        }
        case BLE_L2CAP_EVENT_COC_ACCEPT: {
            DEBUG_printf("l2cap_channel_event: accept: conn_handle=%d peer_sdu_size=%d\n", event->accept.conn_handle, event->accept.peer_sdu_size);
            chan->chan = event->accept.chan;
            ble_l2cap_get_chan_info(event->accept.chan, &info);
            int ret = mp_bluetooth_on_l2cap_accept(event->accept.conn_handle, info.scid, info.psm, info.our_coc_mtu, info.peer_coc_mtu);
            if (ret != 0) {
                return ret;
            }
            struct os_mbuf *sdu_rx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
            assert(sdu_rx);
            return ble_l2cap_recv_ready(chan->chan, sdu_rx);
        }
        case BLE_L2CAP_EVENT_COC_DATA_RECEIVED: {
            DEBUG_printf("l2cap_channel_event: receive: conn_handle=%d len=%d\n", event->receive.conn_handle, OS_MBUF_PKTLEN(event->receive.sdu_rx));

            if (chan->rx_pending) {
                // Ideally this doesn't happen, as the sender should not get
                // any more credits to send more data until we call
                // ble_l2cap_recv_ready. However there might be multiple
                // in-flight packets if the sender was able to send more than
                // one before stalling.
                DEBUG_printf("l2cap_channel_event: receive: appending to rx pending\n");
                // Note: os_mbuf_concat will just join the two together, so
                // sdu_rx is now "owned" by rx_pending.
                os_mbuf_concat(chan->rx_pending, event->receive.sdu_rx);
            } else {
                // Normal case is when the first payload arrives since calling
                // ble_l2cap_recv_ready.
                DEBUG_printf("l2cap_event: receive: new payload\n");
                // Take ownership of sdu_rx.
                chan->rx_pending = event->receive.sdu_rx;
            }

            struct os_mbuf *sdu_rx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
            assert(sdu_rx);

            // ble_l2cap_coc_rx_fn invokes this event handler when a complete payload arrives.
            // However, it NULLs chan->chan->coc_rx.sdu before doing so, expecting that
            // ble_l2cap_recv_ready will be called to give it a new mbuf.
            // This means that if another payload arrives before we call ble_l2cap_recv_ready
            // then ble_l2cap_coc_rx_fn will NULL-deref coc_rx.sdu.

            // Because we're not yet ready to grant new credits to the channel, we can't call
            // ble_l2cap_recv_ready yet, so instead we just give it a new mbuf. This requires
            // ble_l2cap_priv.h for the definition of chan->chan (i.e. struct ble_l2cap_chan).
            chan->chan->coc_rx.sdu = sdu_rx;

            ble_l2cap_get_chan_info(event->receive.chan, &info);

            // Don't allow granting more credits until after the IRQ is handled.
            chan->irq_in_progress = true;

            mp_bluetooth_on_l2cap_recv(event->receive.conn_handle, info.scid);
            chan->irq_in_progress = false;

            // If all data has been consumed by the IRQ handler, then now allow
            // more credits. If the IRQ handler doesn't consume all available data
            // then rx_pending will be still set.
            if (!chan->rx_pending) {
                struct os_mbuf *sdu_rx = chan->chan->coc_rx.sdu;
                assert(sdu_rx);
                if (sdu_rx) {
                    ble_l2cap_recv_ready(chan->chan, sdu_rx);
                }
            }
            break;
        }
        case BLE_L2CAP_EVENT_COC_TX_UNSTALLED: {
            DEBUG_printf("l2cap_channel_event: tx_unstalled: conn_handle=%d status=%d\n", event->tx_unstalled.conn_handle, event->tx_unstalled.status);
            assert(event->tx_unstalled.conn_handle == chan->chan->conn_handle);
            // Don't un-stall if we're still waiting for room in the sys pool.
            if (!chan->mem_stalled) {
                ble_l2cap_get_chan_info(event->receive.chan, &info);
                // Map status to {0,1} (i.e. "sent everything", or "partial send").
                mp_bluetooth_on_l2cap_send_ready(event->tx_unstalled.conn_handle, info.scid, event->tx_unstalled.status == 0 ? 0 : 1);
            }
            break;
        }
        case BLE_L2CAP_EVENT_COC_RECONFIG_COMPLETED: {
            DEBUG_printf("l2cap_channel_event: reconfig_completed: conn_handle=%d\n", event->reconfigured.conn_handle);
            break;
        }
        case BLE_L2CAP_EVENT_COC_PEER_RECONFIGURED: {
            DEBUG_printf("l2cap_channel_event: peer_reconfigured: conn_handle=%d\n", event->reconfigured.conn_handle);
            break;
        }
        default: {
            DEBUG_printf("l2cap_channel_event: unknown event\n");
            break;
        }
    }

    return 0;
}

static mp_bluetooth_nimble_l2cap_channel_t *get_l2cap_channel_for_conn_cid(uint16_t conn_handle, uint16_t cid) {
    // TODO: Support more than one concurrent L2CAP channel. At the moment we
    // just verify that the cid refers to the current channel.
    mp_bluetooth_nimble_l2cap_channel_t *chan = MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan;

    if (!chan) {
        return NULL;
    }

    struct ble_l2cap_chan_info info;
    ble_l2cap_get_chan_info(chan->chan, &info);

    if (info.scid != cid || ble_l2cap_get_conn_handle(chan->chan) != conn_handle) {
        return NULL;
    }

    return chan;
}

static int create_l2cap_channel(uint16_t mtu, mp_bluetooth_nimble_l2cap_channel_t **out) {
    if (MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan) {
        // Only one L2CAP channel allowed.
        // Additionally, if we're listening, then no connections may be initiated.
        DEBUG_printf("create_l2cap_channel: channel already in use\n");
        return MP_EALREADY;
    }

    // We want the TX and RX buffers to share a pool that is some multiple of
    // the MTU size. Figure out how many blocks per MTU (rounding up), then
    // multiply that by the "MTUs per channel" (set to 3 above).
    const size_t buf_blocks = MP_CEIL_DIVIDE(mtu, L2CAP_BUF_BLOCK_SIZE) * L2CAP_BUF_SIZE_MTUS_PER_CHANNEL;

    mp_bluetooth_nimble_l2cap_channel_t *chan = m_new_obj_var(mp_bluetooth_nimble_l2cap_channel_t, sdu_mem, uint8_t, OS_MEMPOOL_SIZE(buf_blocks, L2CAP_BUF_BLOCK_SIZE) * sizeof(os_membuf_t));
    MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_chan = chan;

    // Will be set in BLE_L2CAP_EVENT_COC_CONNECTED or BLE_L2CAP_EVENT_COC_ACCEPT.
    chan->chan = NULL;

    chan->mtu = mtu;
    chan->rx_pending = NULL;
    chan->irq_in_progress = false;

    int err = os_mempool_init(&chan->sdu_mempool, buf_blocks, L2CAP_BUF_BLOCK_SIZE, chan->sdu_mem, "l2cap_sdu_pool");
    if (err != 0) {
        DEBUG_printf("mp_bluetooth_l2cap_connect: os_mempool_init failed %d\n", err);
        return MP_ENOMEM;
    }

    err = os_mbuf_pool_init(&chan->sdu_mbuf_pool, &chan->sdu_mempool, L2CAP_BUF_BLOCK_SIZE, buf_blocks);
    if (err != 0) {
        DEBUG_printf("mp_bluetooth_l2cap_connect: os_mbuf_pool_init failed %d\n", err);
        return MP_ENOMEM;
    }

    *out = chan;
    return 0;
}

int mp_bluetooth_l2cap_listen(uint16_t psm, uint16_t mtu) {
    DEBUG_printf("mp_bluetooth_l2cap_listen: psm=%d, mtu=%d\n", psm, mtu);

    mp_bluetooth_nimble_l2cap_channel_t *chan;
    int err = create_l2cap_channel(mtu, &chan);
    if (err != 0) {
        return err;
    }

    MP_STATE_PORT(bluetooth_nimble_root_pointers)->l2cap_listening = true;

    return ble_hs_err_to_errno(ble_l2cap_create_server(psm, mtu, &l2cap_channel_event, chan));
}

int mp_bluetooth_l2cap_connect(uint16_t conn_handle, uint16_t psm, uint16_t mtu) {
    DEBUG_printf("mp_bluetooth_l2cap_connect: conn_handle=%d, psm=%d, mtu=%d\n", conn_handle, psm, mtu);

    mp_bluetooth_nimble_l2cap_channel_t *chan;
    int err = create_l2cap_channel(mtu, &chan);
    if (err != 0) {
        return err;
    }

    struct os_mbuf *sdu_rx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
    assert(sdu_rx);
    return ble_hs_err_to_errno(ble_l2cap_connect(conn_handle, psm, mtu, sdu_rx, &l2cap_channel_event, chan));
}

int mp_bluetooth_l2cap_disconnect(uint16_t conn_handle, uint16_t cid) {
    DEBUG_printf("mp_bluetooth_l2cap_disconnect: conn_handle=%d, cid=%d\n", conn_handle, cid);
    mp_bluetooth_nimble_l2cap_channel_t *chan = get_l2cap_channel_for_conn_cid(conn_handle, cid);
    if (!chan) {
        return MP_EINVAL;
    }
    return ble_hs_err_to_errno(ble_l2cap_disconnect(chan->chan));
}

int mp_bluetooth_l2cap_send(uint16_t conn_handle, uint16_t cid, const uint8_t *buf, size_t len, bool *stalled) {
    DEBUG_printf("mp_bluetooth_l2cap_send: conn_handle=%d, cid=%d, len=%d\n", conn_handle, cid, (int)len);

    mp_bluetooth_nimble_l2cap_channel_t *chan = get_l2cap_channel_for_conn_cid(conn_handle, cid);
    if (!chan) {
        return MP_EINVAL;
    }

    struct ble_l2cap_chan_info info;
    ble_l2cap_get_chan_info(chan->chan, &info);
    if (len > info.peer_coc_mtu) {
        // This is verified by ble_l2cap_send anyway, but this lets us
        // avoid copying a too-large buffer into an mbuf.
        return MP_EINVAL;
    }

    if (len > (L2CAP_BUF_SIZE_MTUS_PER_CHANNEL - 1) * info.our_coc_mtu) {
        // Always ensure there's at least one local MTU of space left in the buffer
        // for the RX buffer.
        return MP_EINVAL;
    }

    // Grab an mbuf from the pool, and append the incoming buffer to it.
    struct os_mbuf *sdu_tx = os_mbuf_get_pkthdr(&chan->sdu_mbuf_pool, 0);
    if (sdu_tx == NULL) {
        return MP_ENOMEM;
    }
    int err = os_mbuf_append(sdu_tx, buf, len);
    if (err) {
        os_mbuf_free_chain(sdu_tx);
        return MP_ENOMEM;
    }

    *stalled = false;

    err = ble_l2cap_send(chan->chan, sdu_tx);
    if (err == BLE_HS_ESTALLED) {
        // Stalled means that this one will still send but any future ones
        // will fail until we receive an un-stalled event.
        DEBUG_printf("mp_bluetooth_l2cap_send: credit stall\n");
        *stalled = true;
        err = 0;
    } else {
        if (err) {
            // Anything except stalled means it won't attempt to send,
            // so free the mbuf (we're failing the op entirely).
            os_mbuf_free_chain(sdu_tx);
        }
    }

    if (os_msys_num_free() <= os_msys_count() / 2) {
        // If the sys mempool is less than half-full, then back off sending more
        // on this channel.
        DEBUG_printf("mp_bluetooth_l2cap_send: forcing mem stall: count %d, free: %d\n", os_msys_count(), os_msys_num_free());
        chan->mem_stalled = true;
        *stalled = true;
    }

    // Other error codes such as BLE_HS_EBUSY (we're stalled) or BLE_HS_EBADDATA (bigger than MTU).
    return ble_hs_err_to_errno(err);
}

int mp_bluetooth_l2cap_recvinto(uint16_t conn_handle, uint16_t cid, uint8_t *buf, size_t *len) {
    mp_bluetooth_nimble_l2cap_channel_t *chan = get_l2cap_channel_for_conn_cid(conn_handle, cid);
    if (!chan) {
        return MP_EINVAL;
    }

    MICROPY_PY_BLUETOOTH_ENTER
    if (chan->rx_pending) {
        size_t avail = OS_MBUF_PKTLEN(chan->rx_pending);

        if (buf == NULL) {
            // Can use this to implement a poll - just find out how much is available.
            *len = avail;
        } else {
            // Have dest buffer and data available.
            // Figure out how much we should copy.
            *len = min(*len, avail);

            // Extract the required number of bytes.
            os_mbuf_copydata(chan->rx_pending, 0, *len, buf);

            if (*len == avail) {
                // That's all that's available -- free this mbuf and re-enable receiving.
                os_mbuf_free_chain(chan->rx_pending);
                chan->rx_pending = NULL;

                // If we're in the call stack of the l2cap_channel_event handler, then don't
                // re-enable receiving yet (as we need to complete the rest of IRQ handler first).
                if (!chan->irq_in_progress) {
                    // We've already given the channel a new mbuf in l2cap_channel_event above, so
                    // reuse that mbuf in the call to ble_l2cap_recv_ready. This will just
                    // give the channel more credits.
                    struct os_mbuf *sdu_rx = chan->chan->coc_rx.sdu;
                    assert(sdu_rx);
                    if (sdu_rx) {
                        ble_l2cap_recv_ready(chan->chan, sdu_rx);
                    }
                }
            } else {
                // Trim the used bytes from the start of the mbuf.
                // Positive argument means "trim this many from head".
                os_mbuf_adj(chan->rx_pending, *len);
                // Clean up any empty mbufs at the head.
                chan->rx_pending = os_mbuf_trim_front(chan->rx_pending);
            }
        }
    } else {
        // No pending data.
        *len = 0;
    }

    MICROPY_PY_BLUETOOTH_EXIT
    return 0;
}

#endif // MICROPY_PY_BLUETOOTH_ENABLE_L2CAP_CHANNELS

#if MICROPY_PY_BLUETOOTH_ENABLE_HCI_CMD

int mp_bluetooth_hci_cmd(uint16_t ogf, uint16_t ocf, const uint8_t *req, size_t req_len, uint8_t *resp, size_t resp_len, uint8_t *status) {
    int rc = ble_hs_hci_cmd_tx(BLE_HCI_OP(ogf, ocf), req, req_len, resp, resp_len);
    if (rc < BLE_HS_ERR_HCI_BASE || rc >= BLE_HS_ERR_HCI_BASE + 0x100) {
        // The controller didn't handle the command (e.g. HCI timeout).
        return ble_hs_err_to_errno(rc);
    } else {
        // The command executed, but had an error (i.e. invalid parameter).
        *status = rc - BLE_HS_ERR_HCI_BASE;
        return 0;
    }
}

#endif // MICROPY_PY_BLUETOOTH_ENABLE_HCI_CMD

#if MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING

static int ble_secret_store_read(int obj_type, const union ble_store_key *key, union ble_store_value *value) {
    DEBUG_printf("ble_secret_store_read: %d\n", obj_type);
    const uint8_t *key_data;
    size_t key_data_len;

    switch (obj_type) {
        case BLE_STORE_OBJ_TYPE_PEER_SEC: {
            if (ble_addr_cmp(&key->sec.peer_addr, BLE_ADDR_ANY)) {
                // <type=peer,addr,*> (single)
                // Find the entry for this specific peer.
                assert(key->sec.idx == 0);
                assert(!key->sec.ediv_rand_present);
                key_data = (const uint8_t *)&key->sec.peer_addr;
                key_data_len = sizeof(ble_addr_t);
            } else {
                // <type=peer,*> (with index)
                // Iterate all known peers.
                assert(!key->sec.ediv_rand_present);
                key_data = NULL;
                key_data_len = 0;
            }
            break;
        }
        case BLE_STORE_OBJ_TYPE_OUR_SEC: {
            // <type=our,addr,ediv_rand>
            // Find our secret for this remote device, matching this ediv/rand key.
            assert(ble_addr_cmp(&key->sec.peer_addr, BLE_ADDR_ANY)); // Must have address.
            assert(key->sec.idx == 0);
            assert(key->sec.ediv_rand_present);
            key_data = (const uint8_t *)&key->sec.peer_addr;
            key_data_len = sizeof(ble_addr_t);
            break;
        }
        case BLE_STORE_OBJ_TYPE_CCCD: {
            // TODO: Implement CCCD persistence.
            DEBUG_printf("ble_secret_store_read: CCCD not supported.\n");
            return -1;
        }
        default:
            return BLE_HS_ENOTSUP;
    }

    const uint8_t *value_data;
    size_t value_data_len;
    if (!mp_bluetooth_gap_on_get_secret(obj_type, key->sec.idx, key_data, key_data_len, &value_data, &value_data_len)) {
        DEBUG_printf("ble_secret_store_read: Key not found: type=%d, index=%u, key=0x%p, len=" UINT_FMT "\n", obj_type, key->sec.idx, key_data, key_data_len);
        return BLE_HS_ENOENT;
    }

    if (value_data_len != sizeof(struct ble_store_value_sec)) {
        DEBUG_printf("ble_secret_store_read: Invalid key data: actual=" UINT_FMT " expected=" UINT_FMT "\n", value_data_len, sizeof(struct ble_store_value_sec));
        return BLE_HS_ENOENT;
    }

    memcpy((uint8_t *)&value->sec, value_data, sizeof(struct ble_store_value_sec));

    DEBUG_printf("ble_secret_store_read: found secret\n");

    if (obj_type == BLE_STORE_OBJ_TYPE_OUR_SEC) {
        // TODO: Verify ediv_rand matches.
    }

    return 0;
}

static int ble_secret_store_write(int obj_type, const union ble_store_value *val) {
    DEBUG_printf("ble_secret_store_write: %d\n", obj_type);
    switch (obj_type) {
        case BLE_STORE_OBJ_TYPE_PEER_SEC:
        case BLE_STORE_OBJ_TYPE_OUR_SEC: {
            // <type=peer,addr,edivrand>

            struct ble_store_key_sec key_sec;
            const struct ble_store_value_sec *value_sec = &val->sec;
            ble_store_key_from_value_sec(&key_sec, value_sec);

            assert(ble_addr_cmp(&key_sec.peer_addr, BLE_ADDR_ANY)); // Must have address.
            assert(key_sec.ediv_rand_present);

            if (!mp_bluetooth_gap_on_set_secret(obj_type, (const uint8_t *)&key_sec.peer_addr, sizeof(ble_addr_t), (const uint8_t *)value_sec, sizeof(struct ble_store_value_sec))) {
                DEBUG_printf("Failed to write key: type=%d\n", obj_type);
                return BLE_HS_ESTORE_CAP;
            }

            DEBUG_printf("ble_secret_store_write: wrote secret\n");

            return 0;
        }
        case BLE_STORE_OBJ_TYPE_CCCD: {
            // TODO: Implement CCCD persistence.
            DEBUG_printf("ble_secret_store_write: CCCD not supported.\n");
            // Just pretend we wrote it.
            return 0;
        }
        default:
            return BLE_HS_ENOTSUP;
    }
}

static int ble_secret_store_delete(int obj_type, const union ble_store_key *key) {
    DEBUG_printf("ble_secret_store_delete: %d\n", obj_type);
    switch (obj_type) {
        case BLE_STORE_OBJ_TYPE_PEER_SEC:
        case BLE_STORE_OBJ_TYPE_OUR_SEC: {
            // <type=peer,addr,*>

            assert(ble_addr_cmp(&key->sec.peer_addr, BLE_ADDR_ANY)); // Must have address.
            // ediv_rand is optional (will not be present for delete).

            if (!mp_bluetooth_gap_on_set_secret(obj_type, (const uint8_t *)&key->sec.peer_addr, sizeof(ble_addr_t), NULL, 0)) {
                DEBUG_printf("Failed to delete key: type=%d\n", obj_type);
                return BLE_HS_ENOENT;
            }

            DEBUG_printf("ble_secret_store_delete: deleted secret\n");

            return 0;
        }
        case BLE_STORE_OBJ_TYPE_CCCD: {
            // TODO: Implement CCCD persistence.
            DEBUG_printf("ble_secret_store_delete: CCCD not supported.\n");
            // Just pretend it wasn't there.
            return BLE_HS_ENOENT;
        }
        default:
            return BLE_HS_ENOTSUP;
    }
}

#endif // MICROPY_PY_BLUETOOTH_ENABLE_PAIRING_BONDING

#if !MICROPY_BLUETOOTH_NIMBLE_BINDINGS_ONLY
MP_REGISTER_ROOT_POINTER(struct _mp_bluetooth_nimble_malloc_t *bluetooth_nimble_memory);
#endif
MP_REGISTER_ROOT_POINTER(struct _mp_bluetooth_nimble_root_pointers_t *bluetooth_nimble_root_pointers);

#endif // MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE