1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
:mod:`micropython` -- access and control MicroPython internals
==============================================================
.. module:: micropython
:synopsis: access and control MicroPython internals
Functions
---------
.. function:: const(expr)
Used to declare that the expression is a constant so that the compiler can
optimise it. The use of this function should be as follows::
from micropython import const
CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)
Constants declared this way are still accessible as global variables from
outside the module they are declared in. On the other hand, if a constant
begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.
This `const` function is recognised directly by the MicroPython parser and is
provided as part of the :mod:`micropython` module mainly so that scripts can be
written which run under both CPython and MicroPython, by following the above
pattern.
.. function:: opt_level([level])
If *level* is given then this function sets the optimisation level for subsequent
compilation of scripts, and returns ``None``. Otherwise it returns the current
optimisation level.
The optimisation level controls the following compilation features:
- Assertions: at level 0 assertion statements are enabled and compiled into the
bytecode; at levels 1 and higher assertions are not compiled.
- Built-in ``__debug__`` variable: at level 0 this variable expands to ``True``;
at levels 1 and higher it expands to ``False``.
- Source-code line numbers: at levels 0, 1 and 2 source-code line number are
stored along with the bytecode so that exceptions can report the line number
they occurred at; at levels 3 and higher line numbers are not stored.
The default optimisation level is usually level 0.
.. function:: alloc_emergency_exception_buf(size)
Allocate *size* bytes of RAM for the emergency exception buffer (a good
size is around 100 bytes). The buffer is used to create exceptions in cases
when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.
A good way to use this function is to put it at the start of your main script
(eg ``boot.py`` or ``main.py``) and then the emergency exception buffer will be active
for all the code following it.
.. function:: mem_info([verbose])
Print information about currently used memory. If the *verbose* argument
is given then extra information is printed.
The information that is printed is implementation dependent, but currently
includes the amount of stack and heap used. In verbose mode it prints out
the entire heap indicating which blocks are used and which are free.
.. function:: qstr_info([verbose])
Print information about currently interned strings. If the *verbose*
argument is given then extra information is printed.
The information that is printed is implementation dependent, but currently
includes the number of interned strings and the amount of RAM they use. In
verbose mode it prints out the names of all RAM-interned strings.
.. function:: stack_use()
Return an integer representing the current amount of stack that is being
used. The absolute value of this is not particularly useful, rather it
should be used to compute differences in stack usage at different points.
.. function:: heap_lock()
.. function:: heap_unlock()
.. function:: heap_locked()
Lock or unlock the heap. When locked no memory allocation can occur and a
`MemoryError` will be raised if any heap allocation is attempted.
`heap_locked()` returns a true value if the heap is currently locked.
These functions can be nested, ie `heap_lock()` can be called multiple times
in a row and the lock-depth will increase, and then `heap_unlock()` must be
called the same number of times to make the heap available again.
Both `heap_unlock()` and `heap_locked()` return the current lock depth
(after unlocking for the former) as a non-negative integer, with 0 meaning
the heap is not locked.
If the REPL becomes active with the heap locked then it will be forcefully
unlocked.
Note: `heap_locked()` is not enabled on most ports by default,
requires ``MICROPY_PY_MICROPYTHON_HEAP_LOCKED``.
.. function:: kbd_intr(chr)
Set the character that will raise a `KeyboardInterrupt` exception. By
default this is set to 3 during script execution, corresponding to Ctrl-C.
Passing -1 to this function will disable capture of Ctrl-C, and passing 3
will restore it.
This function can be used to prevent the capturing of Ctrl-C on the
incoming stream of characters that is usually used for the REPL, in case
that stream is used for other purposes.
.. function:: schedule(func, arg)
Schedule the function *func* to be executed "very soon". The function
is passed the value *arg* as its single argument. "Very soon" means that
the MicroPython runtime will do its best to execute the function at the
earliest possible time, given that it is also trying to be efficient, and
that the following conditions hold:
- A scheduled function will never preempt another scheduled function.
- Scheduled functions are always executed "between opcodes" which means
that all fundamental Python operations (such as appending to a list)
are guaranteed to be atomic.
- A given port may define "critical regions" within which scheduled
functions will never be executed. Functions may be scheduled within
a critical region but they will not be executed until that region
is exited. An example of a critical region is a preempting interrupt
handler (an IRQ).
A use for this function is to schedule a callback from a preempting IRQ.
Such an IRQ puts restrictions on the code that runs in the IRQ (for example
the heap may be locked) and scheduling a function to call later will lift
those restrictions.
On multi-threaded ports, the scheduled function's behaviour depends on
whether the Global Interpreter Lock (GIL) is enabled for the specific port:
- If GIL is enabled, the function can preempt any thread and run in its
context.
- If GIL is disabled, the function will only preempt the main thread and run
in its context.
Note: If `schedule()` is called from a preempting IRQ, when memory
allocation is not allowed and the callback to be passed to `schedule()` is
a bound method, passing this directly will fail. This is because creating a
reference to a bound method causes memory allocation. A solution is to
create a reference to the method in the class constructor and to pass that
reference to `schedule()`. This is discussed in detail here
:ref:`reference documentation <isr_rules>` under "Creation of Python
objects".
There is a finite queue to hold the scheduled functions and `schedule()`
will raise a `RuntimeError` if the queue is full.
Classes
-------
.. class:: RingIO(size)
.. class:: RingIO(buffer)
:noindex:
Provides a fixed-size ringbuffer for bytes with a stream interface. Can be
considered like a fifo queue variant of `io.BytesIO`.
When created with integer size a suitable buffer will be allocated.
Alternatively a `bytearray` or similar buffer protocol object can be provided
to the constructor for in-place use.
The classic ringbuffer algorithm is used which allows for any size buffer
to be used however one byte will be consumed for tracking. If initialised
with an integer size this will be accounted for, for example ``RingIO(16)``
will allocate a 17 byte buffer internally so it can hold 16 bytes of data.
When passing in a pre-allocated buffer however one byte less than its
original length will be available for storage, eg. ``RingIO(bytearray(16))``
will only hold 15 bytes of data.
A RingIO instance can be IRQ / thread safe when used to pass data in a single
direction eg. when written to in an IRQ and read from in a non-IRQ function
(or vice versa). This does not hold if you try to eg. write to a single instance
from both IRQ and non-IRQ code, this would often cause data corruption.
.. method:: RingIO.any()
Returns an integer counting the number of characters that can be read.
.. method:: RingIO.read([nbytes])
Read available characters. This is a non-blocking function. If ``nbytes``
is specified then read at most that many bytes, otherwise read as much
data as possible.
Return value: a bytes object containing the bytes read. Will be
zero-length bytes object if no data is available.
.. method:: RingIO.readline([nbytes])
Read a line, ending in a newline character or return if one exists in
the buffer, else return available bytes in buffer. If ``nbytes`` is
specified then read at most that many bytes.
Return value: a bytes object containing the line read.
.. method:: RingIO.readinto(buf[, nbytes])
Read available bytes into the provided ``buf``. If ``nbytes`` is
specified then read at most that many bytes. Otherwise, read at
most ``len(buf)`` bytes.
Return value: Integer count of the number of bytes read into ``buf``.
.. method:: RingIO.write(buf)
Non-blocking write of bytes from ``buf`` into the ringbuffer, limited
by the available space in the ringbuffer.
Return value: Integer count of bytes written.
.. method:: RingIO.close()
No-op provided as part of standard `stream` interface. Has no effect
on data in the ringbuffer.
|