summaryrefslogtreecommitdiffstatshomepage
path: root/docs/esp32/quickref.rst
blob: 94b5d966edd307711335fa2a6c7278c8cfd40c6b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
.. _esp32_quickref:

Quick reference for the ESP32
=============================

.. image:: img/esp32.jpg
    :alt: ESP32 board
    :width: 640px

The Espressif ESP32 Development Board (image attribution: Adafruit).

Below is a quick reference for ESP32-based boards.  If it is your first time
working with this board it may be useful to get an overview of the microcontroller:

.. toctree::
   :maxdepth: 1

   general.rst
   tutorial/index.rst

Installing MicroPython
----------------------

See the corresponding section of tutorial: :ref:`esp32_intro`. It also includes
a troubleshooting subsection.

General board control
---------------------

The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200.
Tab-completion is useful to find out what methods an object has.
Paste mode (ctrl-E) is useful to paste a large slab of Python code into
the REPL.

The :mod:`machine` module::

    import machine

    machine.freq()          # get the current frequency of the CPU
    machine.freq(240000000) # set the CPU frequency to 240 MHz

The :mod:`esp` module::

    import esp

    esp.osdebug(None)       # turn off vendor O/S debugging messages
    esp.osdebug(0)          # redirect vendor O/S debugging messages to UART(0)

    # low level methods to interact with flash storage
    esp.flash_size()
    esp.flash_user_start()
    esp.flash_erase(sector_no)
    esp.flash_write(byte_offset, buffer)
    esp.flash_read(byte_offset, buffer)

The :mod:`esp32` module::

    import esp32

    esp32.hall_sensor()     # read the internal hall sensor
    esp32.raw_temperature() # read the internal temperature of the MCU, in Fahrenheit
    esp32.ULP()             # access to the Ultra-Low-Power Co-processor

Note that the temperature sensor in the ESP32 will typically read higher than
ambient due to the IC getting warm while it runs.  This effect can be minimised
by reading the temperature sensor immediately after waking up from sleep.

Networking
----------

The :mod:`network` module::

    import network

    wlan = network.WLAN(network.STA_IF) # create station interface
    wlan.active(True)       # activate the interface
    wlan.scan()             # scan for access points
    wlan.isconnected()      # check if the station is connected to an AP
    wlan.connect('essid', 'password') # connect to an AP
    wlan.config('mac')      # get the interface's MAC address
    wlan.ifconfig()         # get the interface's IP/netmask/gw/DNS addresses

    ap = network.WLAN(network.AP_IF) # create access-point interface
    ap.config(essid='ESP-AP') # set the ESSID of the access point
    ap.config(max_clients=10) # set how many clients can connect to the network
    ap.active(True)         # activate the interface

A useful function for connecting to your local WiFi network is::

    def do_connect():
        import network
        wlan = network.WLAN(network.STA_IF)
        wlan.active(True)
        if not wlan.isconnected():
            print('connecting to network...')
            wlan.connect('essid', 'password')
            while not wlan.isconnected():
                pass
        print('network config:', wlan.ifconfig())

Once the network is established the :mod:`socket <socket>` module can be used
to create and use TCP/UDP sockets as usual, and the ``urequests`` module for
convenient HTTP requests.

After a call to ``wlan.connect()``, the device will by default retry to connect
**forever**, even when the authentication failed or no AP is in range.
``wlan.status()`` will return ``network.STAT_CONNECTING`` in this state until a
connection succeeds or the interface gets disabled.  This can be changed by
calling ``wlan.config(reconnects=n)``, where n are the number of desired reconnect
attempts (0 means it won't retry, -1 will restore the default behaviour of trying
to reconnect forever).

Delay and timing
----------------

Use the :mod:`time <time>` module::

    import time

    time.sleep(1)           # sleep for 1 second
    time.sleep_ms(500)      # sleep for 500 milliseconds
    time.sleep_us(10)       # sleep for 10 microseconds
    start = time.ticks_ms() # get millisecond counter
    delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

Timers
------

The ESP32 port has four hardware timers. Use the :ref:`machine.Timer <machine.Timer>` class
with a timer ID from 0 to 3 (inclusive)::

    from machine import Timer

    tim0 = Timer(0)
    tim0.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(0))

    tim1 = Timer(1)
    tim1.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(1))

The period is in milliseconds.

Virtual timers are not currently supported on this port.

.. _Pins_and_GPIO:

Pins and GPIO
-------------

Use the :ref:`machine.Pin <machine.Pin>` class::

    from machine import Pin

    p0 = Pin(0, Pin.OUT)    # create output pin on GPIO0
    p0.on()                 # set pin to "on" (high) level
    p0.off()                # set pin to "off" (low) level
    p0.value(1)             # set pin to on/high

    p2 = Pin(2, Pin.IN)     # create input pin on GPIO2
    print(p2.value())       # get value, 0 or 1

    p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
    p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation

Available Pins are from the following ranges (inclusive): 0-19, 21-23, 25-27, 32-39.
These correspond to the actual GPIO pin numbers of ESP32 chip.  Note that many
end-user boards use their own adhoc pin numbering (marked e.g. D0, D1, ...).
For mapping between board logical pins and physical chip pins consult your board
documentation.

Notes:

* Pins 1 and 3 are REPL UART TX and RX respectively

* Pins 6, 7, 8, 11, 16, and 17 are used for connecting the embedded flash,
  and are not recommended for other uses

* Pins 34-39 are input only, and also do not have internal pull-up resistors

* The pull value of some pins can be set to ``Pin.PULL_HOLD`` to reduce power
  consumption during deepsleep.

There's a higher-level abstraction :ref:`machine.Signal <machine.Signal>`
which can be used to invert a pin. Useful for illuminating active-low LEDs
using ``on()`` or ``value(1)``.

UART (serial bus)
-----------------

See :ref:`machine.UART <machine.UART>`. ::

    from machine import UART

    uart1 = UART(1, baudrate=9600, tx=33, rx=32)
    uart1.write('hello')  # write 5 bytes
    uart1.read(5)         # read up to 5 bytes

The ESP32 has three hardware UARTs: UART0, UART1 and UART2.
They each have default GPIO assigned to them, however depending on your
ESP32 variant and board, these pins may conflict with embedded flash,
onboard PSRAM or peripherals.

Any GPIO can be used for hardware UARTs using the GPIO matrix, so to avoid
conflicts simply provide ``tx`` and ``rx`` pins when constructing. The default
pins listed below.

=====  =====  =====  =====
\      UART0  UART1  UART2
=====  =====  =====  =====
tx     1      10     17
rx     3      9      16
=====  =====  =====  =====

PWM (pulse width modulation)
----------------------------

PWM can be enabled on all output-enabled pins. The base frequency can
range from 1Hz to 40MHz but there is a tradeoff; as the base frequency
*increases* the duty resolution *decreases*. See
`LED Control <https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/ledc.html>`_
for more details.

Use the :ref:`machine.PWM <machine.PWM>` class::

    from machine import Pin, PWM

    pwm0 = PWM(Pin(0))         # create PWM object from a pin
    freq = pwm0.freq()         # get current frequency (default 5kHz)
    pwm0.freq(1000)            # set PWM frequency from 1Hz to 40MHz

    duty = pwm0.duty()         # get current duty cycle, range 0-1023 (default 512, 50%)
    pwm0.duty(256)             # set duty cycle from 0 to 1023 as a ratio duty/1023, (now 25%)

    duty_u16 = pwm0.duty_u16() # get current duty cycle, range 0-65535
    pwm0.duty_u16(2**16*3//4)  # set duty cycle from 0 to 65535 as a ratio duty_u16/65535, (now 75%)

    duty_ns = pwm0.duty_ns()   # get current pulse width in ns
    pwm0.duty_ns(250_000)      # set pulse width in nanoseconds from 0 to 1_000_000_000/freq, (now 25%)

    pwm0.deinit()              # turn off PWM on the pin

    pwm2 = PWM(Pin(2), freq=20000, duty=512)  # create and configure in one go
    print(pwm2)                               # view PWM settings

ESP chips have different hardware peripherals:

=====================================================  ========  ========  ========
Hardware specification                                    ESP32  ESP32-S2  ESP32-C3
-----------------------------------------------------  --------  --------  --------
Number of groups (speed modes)                                2         1         1
Number of timers per group                                    4         4         4
Number of channels per group                                  8         8         6
-----------------------------------------------------  --------  --------  --------
Different PWM frequencies (groups * timers)                   8         4         4
Total PWM channels (Pins, duties) (groups * channels)        16         8         6
=====================================================  ========  ========  ========

A maximum number of PWM channels (Pins) are available on the ESP32 - 16 channels,
but only 8 different PWM frequencies are available, the remaining 8 channels must
have the same frequency.  On the other hand, 16 independent PWM duty cycles are
possible at the same frequency.

See more examples in the :ref:`esp32_pwm` tutorial.

ADC (analog to digital conversion)
----------------------------------

On the ESP32 ADC functionality is available on pins 32-39 (ADC block 1) and pins
0, 2, 4, 12-15 and 25-27 (ADC block 2).

Use the :ref:`machine.ADC <machine.ADC>` class::

    from machine import ADC

    adc = ADC(Pin(32))          # create ADC object for pin 32
    adc.read_u16()              # read raw value, 0-65535

Note that the ESP32 uses an internal ADC reference voltage of 1.0v. To read
voltages above this value, input attenuation can be applied with the optional
``atten`` keyword argument to the constructor. Valid values are:

  - ``ADC.ATTN_0DB``: No attenuation, this is the default
  - ``ADC.ATTN_2_5DB``: 2.5dB attenuation, gives a maximum input voltage of
    approximately 1.33v
  - ``ADC.ATTN_6DB``: 6dB attenuation, gives a maximum input voltage of
    approximately 2.00v
  - ``ADC.ATTN_11DB``: 11dB attenuation, gives a maximum input voltage of
    approximately 3.55v

E.g.::

    adc = ADC(Pin(25), atten=ADC.ATTEN_11DB)  # 0.0v - 3.55v range

.. Warning::
   Note that, although 11dB attenuation allows for a voltage range up to 3.55v,
   the absolute maximum voltage rating for input pins is 3.6v, and so going
   near this boundary risks damage to the IC!

ESP32-specific ADC class method reference:

.. method:: ADC.init(*, atten)

    Re-initialize the ADC pin with a different input attenuation.

.. method:: ADC.read_uv()

    This method uses internal per-package calibration values - set during
    manufacture - to return the ADC input voltage in microvolts, taking into
    account any input attenuation applied. Note that the calibration curves do
    not guarantee that an input tied to ground will read as 0, and the returned
    values have only millivolt resolution.

.. method:: ADC.block()

    Return the matching ``ADCBlock`` object.

.. class:: ADCBlock(id, *, bits)

    Return the ADC block object with the given ``id`` (1 or 2) and initialize
    it to the specified resolution (9 to 12-bits) or the default 12-bits.

.. method:: ADCBlock.init(*, bits)

    Re-initialize the ADC block with a specific resolution.

.. method:: ADCBlock.connect(channel_or_pin)

    Return the ``ADC`` object for the specified ADC channel number or Pin object.

Legacy API methods:

.. method:: ADC.read()

    This method returns the raw ADC value ranged according to the resolution of
    the ADC block, 0-4095 for the default 12-bit resolution.

.. method:: ADC.atten(attenuation)

    Equivalent to ``ADC.init(atten=attenuation)``.

.. method:: ADC.width(width)

    Equivalent to ``ADC.block().init(bits=width)``.

For compatibility, the ``ADC`` object also provides constants matching the
supported ADC resolutions:

  - ``ADC.WIDTH_9BIT`` = 9
  - ``ADC.WIDTH_10BIT`` = 10
  - ``ADC.WIDTH_11BIT`` = 11
  - ``ADC.WIDTH_12BIT`` = 12


Software SPI bus
----------------

Software SPI (using bit-banging) works on all pins, and is accessed via the
:ref:`machine.SoftSPI <machine.SoftSPI>` class::

    from machine import Pin, SoftSPI

    # construct a SoftSPI bus on the given pins
    # polarity is the idle state of SCK
    # phase=0 means sample on the first edge of SCK, phase=1 means the second
    spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))

    spi.init(baudrate=200000) # set the baudrate

    spi.read(10)            # read 10 bytes on MISO
    spi.read(10, 0xff)      # read 10 bytes while outputting 0xff on MOSI

    buf = bytearray(50)     # create a buffer
    spi.readinto(buf)       # read into the given buffer (reads 50 bytes in this case)
    spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

    spi.write(b'12345')     # write 5 bytes on MOSI

    buf = bytearray(4)      # create a buffer
    spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
    spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

.. Warning::
   Currently *all* of ``sck``, ``mosi`` and ``miso`` *must* be specified when
   initialising Software SPI.

Hardware SPI bus
----------------

There are two hardware SPI channels that allow faster transmission
rates (up to 80Mhz). These may be used on any IO pins that support the
required direction and are otherwise unused (see :ref:`Pins_and_GPIO`)
but if they are not configured to their default pins then they need to
pass through an extra layer of GPIO multiplexing, which can impact
their reliability at high speeds. Hardware SPI channels are limited
to 40MHz when used on pins other than the default ones listed below.

=====  ===========  ============
\      HSPI (id=1)   VSPI (id=2)
=====  ===========  ============
sck    14           18
mosi   13           23
miso   12           19
=====  ===========  ============

Hardware SPI is accessed via the :ref:`machine.SPI <machine.SPI>` class and
has the same methods as software SPI above::

    from machine import Pin, SPI

    hspi = SPI(1, 10000000)
    hspi = SPI(1, 10000000, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
    vspi = SPI(2, baudrate=80000000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18), mosi=Pin(23), miso=Pin(19))

Software I2C bus
----------------

Software I2C (using bit-banging) works on all output-capable pins, and is
accessed via the :ref:`machine.SoftI2C <machine.SoftI2C>` class::

    from machine import Pin, SoftI2C

    i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100000)

    i2c.scan()              # scan for devices

    i2c.readfrom(0x3a, 4)   # read 4 bytes from device with address 0x3a
    i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a

    buf = bytearray(10)     # create a buffer with 10 bytes
    i2c.writeto(0x3a, buf)  # write the given buffer to the peripheral

Hardware I2C bus
----------------

There are two hardware I2C peripherals with identifiers 0 and 1.  Any available
output-capable pins can be used for SCL and SDA but the defaults are given
below.

=====  ===========  ============
\      I2C(0)       I2C(1)
=====  ===========  ============
scl    18           25
sda    19           26
=====  ===========  ============

The driver is accessed via the :ref:`machine.I2C <machine.I2C>` class and
has the same methods as software I2C above::

    from machine import Pin, I2C

    i2c = I2C(0)
    i2c = I2C(1, scl=Pin(5), sda=Pin(4), freq=400000)

I2S bus
-------

See :ref:`machine.I2S <machine.I2S>`. ::

    from machine import I2S, Pin

    i2s = I2S(0, sck=Pin(13), ws=Pin(14), sd=Pin(34), mode=I2S.TX, bits=16, format=I2S.STEREO, rate=44100, ibuf=40000) # create I2S object
    i2s.write(buf)             # write buffer of audio samples to I2S device

    i2s = I2S(1, sck=Pin(33), ws=Pin(25), sd=Pin(32), mode=I2S.RX, bits=16, format=I2S.MONO, rate=22050, ibuf=40000) # create I2S object
    i2s.readinto(buf)          # fill buffer with audio samples from I2S device

The I2S class is currently available as a Technical Preview.  During the preview period, feedback from
users is encouraged.  Based on this feedback, the I2S class API and implementation may be changed.

ESP32 has two I2S buses with id=0 and id=1

Real time clock (RTC)
---------------------

See :ref:`machine.RTC <machine.RTC>` ::

    from machine import RTC

    rtc = RTC()
    rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
    rtc.datetime() # get date and time

WDT (Watchdog timer)
--------------------

See :ref:`machine.WDT <machine.WDT>`. ::

    from machine import WDT

    # enable the WDT with a timeout of 5s (1s is the minimum)
    wdt = WDT(timeout=5000)
    wdt.feed()

Deep-sleep mode
---------------

The following code can be used to sleep, wake and check the reset cause::

    import machine

    # check if the device woke from a deep sleep
    if machine.reset_cause() == machine.DEEPSLEEP_RESET:
        print('woke from a deep sleep')

    # put the device to sleep for 10 seconds
    machine.deepsleep(10000)

Notes:

* Calling ``deepsleep()`` without an argument will put the device to sleep
  indefinitely
* A software reset does not change the reset cause
* There may be some leakage current flowing through enabled internal pullups.
  To further reduce power consumption it is possible to disable the internal pullups::

    p1 = Pin(4, Pin.IN, Pin.PULL_HOLD)

  After leaving deepsleep it may be necessary to un-hold the pin explicitly (e.g. if
  it is an output pin) via::

    p1 = Pin(4, Pin.OUT, None)

SD card
-------

See :ref:`machine.SDCard <machine.SDCard>`. ::

    import machine, os

    # Slot 2 uses pins sck=18, cs=5, miso=19, mosi=23
    sd = machine.SDCard(slot=2)
    os.mount(sd, "/sd")  # mount

    os.listdir('/sd')    # list directory contents

    os.umount('/sd')     # eject

RMT
---

The RMT is ESP32-specific and allows generation of accurate digital pulses with
12.5ns resolution.  See :ref:`esp32.RMT <esp32.RMT>` for details.  Usage is::

    import esp32
    from machine import Pin

    r = esp32.RMT(0, pin=Pin(18), clock_div=8)
    r   # RMT(channel=0, pin=18, source_freq=80000000, clock_div=8)
    # The channel resolution is 100ns (1/(source_freq/clock_div)).
    r.write_pulses((1, 20, 2, 40), 0) # Send 0 for 100ns, 1 for 2000ns, 0 for 200ns, 1 for 4000ns

OneWire driver
--------------

The OneWire driver is implemented in software and works on all pins::

    from machine import Pin
    import onewire

    ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
    ow.scan()               # return a list of devices on the bus
    ow.reset()              # reset the bus
    ow.readbyte()           # read a byte
    ow.writebyte(0x12)      # write a byte on the bus
    ow.write('123')         # write bytes on the bus
    ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices::

    import time, ds18x20
    ds = ds18x20.DS18X20(ow)
    roms = ds.scan()
    ds.convert_temp()
    time.sleep_ms(750)
    for rom in roms:
        print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line.  Note that
the ``convert_temp()`` method must be called each time you want to
sample the temperature.

NeoPixel and APA106 driver
--------------------------

Use the ``neopixel`` and ``apa106`` modules::

    from machine import Pin
    from neopixel import NeoPixel

    pin = Pin(0, Pin.OUT)   # set GPIO0 to output to drive NeoPixels
    np = NeoPixel(pin, 8)   # create NeoPixel driver on GPIO0 for 8 pixels
    np[0] = (255, 255, 255) # set the first pixel to white
    np.write()              # write data to all pixels
    r, g, b = np[0]         # get first pixel colour


The APA106 driver extends NeoPixel, but internally uses a different colour order::

    from apa106 import APA106
    ap = APA106(pin, 8)
    r, g, b = ap[0]

For low-level driving of a NeoPixel::

    import esp
    esp.neopixel_write(pin, grb_buf, is800khz)

.. Warning::
   By default ``NeoPixel`` is configured to control the more popular *800kHz*
   units. It is possible to use alternative timing to control other (typically
   400kHz) devices by passing ``timing=0`` when constructing the
   ``NeoPixel`` object.

The low-level driver uses an RMT channel by default.  To configure this see
`RMT.bitstream_channel`.

APA102 (DotStar) uses a different driver as it has an additional clock pin.

Capacitive touch
----------------

Use the ``TouchPad`` class in the ``machine`` module::

    from machine import TouchPad, Pin

    t = TouchPad(Pin(14))
    t.read()              # Returns a smaller number when touched

``TouchPad.read`` returns a value relative to the capacitive variation. Small numbers (typically in
the *tens*) are common when a pin is touched, larger numbers (above *one thousand*) when
no touch is present. However the values are *relative* and can vary depending on the board
and surrounding composition so some calibration may be required.

There are ten capacitive touch-enabled pins that can be used on the ESP32: 0, 2, 4, 12, 13
14, 15, 27, 32, 33. Trying to assign to any other pins will result in a ``ValueError``.

Note that TouchPads can be used to wake an ESP32 from sleep::

    import machine
    from machine import TouchPad, Pin
    import esp32

    t = TouchPad(Pin(14))
    t.config(500)               # configure the threshold at which the pin is considered touched
    esp32.wake_on_touch(True)
    machine.lightsleep()        # put the MCU to sleep until a touchpad is touched

For more details on touchpads refer to `Espressif Touch Sensor
<https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/touch_pad.html>`_.


DHT driver
----------

The DHT driver is implemented in software and works on all pins::

    import dht
    import machine

    d = dht.DHT11(machine.Pin(4))
    d.measure()
    d.temperature() # eg. 23 (°C)
    d.humidity()    # eg. 41 (% RH)

    d = dht.DHT22(machine.Pin(4))
    d.measure()
    d.temperature() # eg. 23.6 (°C)
    d.humidity()    # eg. 41.3 (% RH)

WebREPL (web browser interactive prompt)
----------------------------------------

WebREPL (REPL over WebSockets, accessible via a web browser) is an
experimental feature available in ESP32 port. Download web client
from https://github.com/micropython/webrepl (hosted version available
at http://micropython.org/webrepl), and configure it by executing::

    import webrepl_setup

and following on-screen instructions. After reboot, it will be available
for connection. If you disabled automatic start-up on boot, you may
run configured daemon on demand using::

    import webrepl
    webrepl.start()

    # or, start with a specific password
    webrepl.start(password='mypass')

The WebREPL daemon listens on all active interfaces, which can be STA or
AP.  This allows you to connect to the ESP32 via a router (the STA
interface) or directly when connected to its access point.

In addition to terminal/command prompt access, WebREPL also has provision
for file transfer (both upload and download).  The web client has buttons for
the corresponding functions, or you can use the command-line client
``webrepl_cli.py`` from the repository above.

See the MicroPython forum for other community-supported alternatives
to transfer files to an ESP32 board.