diff options
Diffstat (limited to 'py/modcmath.c')
-rw-r--r-- | py/modcmath.c | 40 |
1 files changed, 20 insertions, 20 deletions
diff --git a/py/modcmath.c b/py/modcmath.c index 1418362ad9..33cb00cbe7 100644 --- a/py/modcmath.c +++ b/py/modcmath.c @@ -31,15 +31,15 @@ #include <math.h> // phase(z): returns the phase of the number z in the range (-pi, +pi] -STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase); // polar(z): returns the polar form of z as a tuple -STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_obj_t tuple[2] = { @@ -48,71 +48,71 @@ STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { }; return mp_obj_new_tuple(2, tuple); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); // rect(r, phi): returns the complex number with modulus r and phase phi -STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { +static mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { mp_float_t r = mp_obj_get_float(r_obj); mp_float_t phi = mp_obj_get_float(phi_obj); return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); +static MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); // exp(z): return the exponential of z -STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); // log(z): return the natural logarithm of z, with branch cut along the negative real axis // TODO can take second argument, being the base -STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_log(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log)(real * real + imag * imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS // log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis -STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log10)(real * real + imag * imag), MICROPY_FLOAT_CONST(0.4342944819032518) * MICROPY_FLOAT_C_FUN(atan2)(imag, real)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); #endif // sqrt(z): return the square-root of z -STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real * real + imag * imag, MICROPY_FLOAT_CONST(0.25)); mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real); return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); // cos(z): return the cosine of z -STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); // sin(z): return the sine of z -STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { +static mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); } -STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin); +static MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin); -STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = { +static const mp_rom_map_elem_t mp_module_cmath_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) }, { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, @@ -142,7 +142,7 @@ STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = { // { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) }, }; -STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table); +static MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table); const mp_obj_module_t mp_module_cmath = { .base = { &mp_type_module }, |