diff options
author | Damien George <damien.p.george@gmail.com> | 2015-08-14 12:24:11 +0100 |
---|---|---|
committer | Damien George <damien.p.george@gmail.com> | 2015-08-17 12:51:26 +0100 |
commit | 65dc960e3b22a8426e369607e47c19b380ce30ea (patch) | |
tree | 5e55ec2861df54e14fdb0eac1d030b34f684743b /tests/bytecode/pylib-tests/fnmatch.py | |
parent | 0e978349a5e7696aa44a0faf5d046081a0616ca5 (diff) | |
download | micropython-65dc960e3b22a8426e369607e47c19b380ce30ea.tar.gz micropython-65dc960e3b22a8426e369607e47c19b380ce30ea.zip |
unix-cpy: Remove unix-cpy. It's no longer needed.
unix-cpy was originally written to get semantic equivalent with CPython
without writing functional tests. When writing the initial
implementation of uPy it was a long way between lexer and functional
tests, so the half-way test was to make sure that the bytecode was
correct. The idea was that if the uPy bytecode matched CPython 1-1 then
uPy would be proper Python if the bytecodes acted correctly. And having
matching bytecode meant that it was less likely to miss some deep
subtlety in the Python semantics that would require an architectural
change later on.
But that is all history and it no longer makes sense to retain the
ability to output CPython bytecode, because:
1. It outputs CPython 3.3 compatible bytecode. CPython's bytecode
changes from version to version, and seems to have changed quite a bit
in 3.5. There's no point in changing the bytecode output to match
CPython anymore.
2. uPy and CPy do different optimisations to the bytecode which makes it
harder to match.
3. The bytecode tests are not run. They were never part of Travis and
are not run locally anymore.
4. The EMIT_CPYTHON option needs a lot of extra source code which adds
heaps of noise, especially in compile.c.
5. Now that there is an extensive test suite (which tests functionality)
there is no need to match the bytecode. Some very subtle behaviour is
tested with the test suite and passing these tests is a much better
way to stay Python-language compliant, rather than trying to match
CPy bytecode.
Diffstat (limited to 'tests/bytecode/pylib-tests/fnmatch.py')
-rw-r--r-- | tests/bytecode/pylib-tests/fnmatch.py | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/tests/bytecode/pylib-tests/fnmatch.py b/tests/bytecode/pylib-tests/fnmatch.py deleted file mode 100644 index 6330b0cfda..0000000000 --- a/tests/bytecode/pylib-tests/fnmatch.py +++ /dev/null @@ -1,109 +0,0 @@ -"""Filename matching with shell patterns. - -fnmatch(FILENAME, PATTERN) matches according to the local convention. -fnmatchcase(FILENAME, PATTERN) always takes case in account. - -The functions operate by translating the pattern into a regular -expression. They cache the compiled regular expressions for speed. - -The function translate(PATTERN) returns a regular expression -corresponding to PATTERN. (It does not compile it.) -""" -import os -import posixpath -import re -import functools - -__all__ = ["filter", "fnmatch", "fnmatchcase", "translate"] - -def fnmatch(name, pat): - """Test whether FILENAME matches PATTERN. - - Patterns are Unix shell style: - - * matches everything - ? matches any single character - [seq] matches any character in seq - [!seq] matches any char not in seq - - An initial period in FILENAME is not special. - Both FILENAME and PATTERN are first case-normalized - if the operating system requires it. - If you don't want this, use fnmatchcase(FILENAME, PATTERN). - """ - name = os.path.normcase(name) - pat = os.path.normcase(pat) - return fnmatchcase(name, pat) - -@functools.lru_cache(maxsize=256, typed=True) -def _compile_pattern(pat): - if isinstance(pat, bytes): - pat_str = str(pat, 'ISO-8859-1') - res_str = translate(pat_str) - res = bytes(res_str, 'ISO-8859-1') - else: - res = translate(pat) - return re.compile(res).match - -def filter(names, pat): - """Return the subset of the list NAMES that match PAT.""" - result = [] - pat = os.path.normcase(pat) - match = _compile_pattern(pat) - if os.path is posixpath: - # normcase on posix is NOP. Optimize it away from the loop. - for name in names: - if match(name): - result.append(name) - else: - for name in names: - if match(os.path.normcase(name)): - result.append(name) - return result - -def fnmatchcase(name, pat): - """Test whether FILENAME matches PATTERN, including case. - - This is a version of fnmatch() which doesn't case-normalize - its arguments. - """ - match = _compile_pattern(pat) - return match(name) is not None - - -def translate(pat): - """Translate a shell PATTERN to a regular expression. - - There is no way to quote meta-characters. - """ - - i, n = 0, len(pat) - res = '' - while i < n: - c = pat[i] - i = i+1 - if c == '*': - res = res + '.*' - elif c == '?': - res = res + '.' - elif c == '[': - j = i - if j < n and pat[j] == '!': - j = j+1 - if j < n and pat[j] == ']': - j = j+1 - while j < n and pat[j] != ']': - j = j+1 - if j >= n: - res = res + '\\[' - else: - stuff = pat[i:j].replace('\\','\\\\') - i = j+1 - if stuff[0] == '!': - stuff = '^' + stuff[1:] - elif stuff[0] == '^': - stuff = '\\' + stuff - res = '%s[%s]' % (res, stuff) - else: - res = res + re.escape(c) - return res + '\Z(?ms)' |