aboutsummaryrefslogtreecommitdiffstatshomepage
diff options
context:
space:
mode:
-rw-r--r--Include/internal/pycore_dtoa.h2
-rw-r--r--Include/pymath.h25
-rw-r--r--Lib/test/test_cmath.py5
-rw-r--r--Lib/test/test_complex.py7
-rw-r--r--Lib/test/test_float.py5
-rw-r--r--Lib/test/test_math.py4
-rw-r--r--Misc/NEWS.d/next/Core and Builtins/2023-05-08-10-34-55.gh-issue-104263.ctHWI8.rst6
-rw-r--r--Modules/cmathmodule.c61
-rw-r--r--Modules/mathmodule.c39
-rw-r--r--Objects/floatobject.c13
-rw-r--r--Python/dtoa.c34
-rw-r--r--Python/pystrtod.c41
12 files changed, 44 insertions, 198 deletions
diff --git a/Include/internal/pycore_dtoa.h b/Include/internal/pycore_dtoa.h
index fb524770efe..4d9681d59a6 100644
--- a/Include/internal/pycore_dtoa.h
+++ b/Include/internal/pycore_dtoa.h
@@ -64,8 +64,6 @@ PyAPI_FUNC(double) _Py_dg_strtod(const char *str, char **ptr);
PyAPI_FUNC(char *) _Py_dg_dtoa(double d, int mode, int ndigits,
int *decpt, int *sign, char **rve);
PyAPI_FUNC(void) _Py_dg_freedtoa(char *s);
-PyAPI_FUNC(double) _Py_dg_stdnan(int sign);
-PyAPI_FUNC(double) _Py_dg_infinity(int sign);
#endif // _PY_SHORT_FLOAT_REPR == 1
diff --git a/Include/pymath.h b/Include/pymath.h
index 772b67e4977..4c1e3d99848 100644
--- a/Include/pymath.h
+++ b/Include/pymath.h
@@ -39,27 +39,24 @@
// Return 1 if float or double arg is neither infinite nor NAN, else 0.
#define Py_IS_FINITE(X) isfinite(X)
-/* HUGE_VAL is supposed to expand to a positive double infinity. Python
- * uses Py_HUGE_VAL instead because some platforms are broken in this
- * respect. We used to embed code in pyport.h to try to worm around that,
- * but different platforms are broken in conflicting ways. If you're on
- * a platform where HUGE_VAL is defined incorrectly, fiddle your Python
- * config to #define Py_HUGE_VAL to something that works on your platform.
+// Py_INFINITY: Value that evaluates to a positive double infinity.
+#ifndef Py_INFINITY
+# define Py_INFINITY ((double)INFINITY)
+#endif
+
+/* Py_HUGE_VAL should always be the same as Py_INFINITY. But historically
+ * this was not reliable and Python did not require IEEE floats and C99
+ * conformity. Prefer Py_INFINITY for new code.
*/
#ifndef Py_HUGE_VAL
# define Py_HUGE_VAL HUGE_VAL
#endif
-// Py_NAN: Value that evaluates to a quiet Not-a-Number (NaN).
+/* Py_NAN: Value that evaluates to a quiet Not-a-Number (NaN). The sign is
+ * undefined and normally not relevant, but e.g. fixed for float("nan").
+ */
#if !defined(Py_NAN)
-# if _Py__has_builtin(__builtin_nan)
- // Built-in implementation of the ISO C99 function nan(): quiet NaN.
-# define Py_NAN (__builtin_nan(""))
-#else
- // Use C99 NAN constant: quiet Not-A-Number.
- // NAN is a float, Py_NAN is a double: cast to double.
# define Py_NAN ((double)NAN)
-# endif
#endif
#endif /* Py_PYMATH_H */
diff --git a/Lib/test/test_cmath.py b/Lib/test/test_cmath.py
index cd2c6939105..57f80d5d8cd 100644
--- a/Lib/test/test_cmath.py
+++ b/Lib/test/test_cmath.py
@@ -166,6 +166,11 @@ class CMathTests(unittest.TestCase):
self.assertEqual(cmath.nan.imag, 0.0)
self.assertEqual(cmath.nanj.real, 0.0)
self.assertTrue(math.isnan(cmath.nanj.imag))
+ # Also check that the sign of all of these is positive:
+ self.assertEqual(math.copysign(1., cmath.nan.real), 1.)
+ self.assertEqual(math.copysign(1., cmath.nan.imag), 1.)
+ self.assertEqual(math.copysign(1., cmath.nanj.real), 1.)
+ self.assertEqual(math.copysign(1., cmath.nanj.imag), 1.)
# Check consistency with reprs.
self.assertEqual(repr(cmath.inf), "inf")
diff --git a/Lib/test/test_complex.py b/Lib/test/test_complex.py
index 51ba151505f..9180cca62b2 100644
--- a/Lib/test/test_complex.py
+++ b/Lib/test/test_complex.py
@@ -529,6 +529,12 @@ class ComplexTest(unittest.TestCase):
self.assertFloatsAreIdentical(z.real, x)
self.assertFloatsAreIdentical(z.imag, y)
+ def test_constructor_negative_nans_from_string(self):
+ self.assertEqual(copysign(1., complex("-nan").real), -1.)
+ self.assertEqual(copysign(1., complex("-nanj").imag), -1.)
+ self.assertEqual(copysign(1., complex("-nan-nanj").real), -1.)
+ self.assertEqual(copysign(1., complex("-nan-nanj").imag), -1.)
+
def test_underscores(self):
# check underscores
for lit in VALID_UNDERSCORE_LITERALS:
@@ -569,6 +575,7 @@ class ComplexTest(unittest.TestCase):
test(complex(NAN, 1), "(nan+1j)")
test(complex(1, NAN), "(1+nanj)")
test(complex(NAN, NAN), "(nan+nanj)")
+ test(complex(-NAN, -NAN), "(nan+nanj)")
test(complex(0, INF), "infj")
test(complex(0, -INF), "-infj")
diff --git a/Lib/test/test_float.py b/Lib/test/test_float.py
index f8350c1e4ca..c4ee1e08251 100644
--- a/Lib/test/test_float.py
+++ b/Lib/test/test_float.py
@@ -1040,11 +1040,8 @@ class InfNanTest(unittest.TestCase):
self.assertEqual(copysign(1.0, float('inf')), 1.0)
self.assertEqual(copysign(1.0, float('-inf')), -1.0)
- @unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
- "applies only when using short float repr style")
def test_nan_signs(self):
- # When using the dtoa.c code, the sign of float('nan') should
- # be predictable.
+ # The sign of float('nan') should be predictable.
self.assertEqual(copysign(1.0, float('nan')), 1.0)
self.assertEqual(copysign(1.0, float('-nan')), -1.0)
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py
index 433161c2dd4..f282434c9a3 100644
--- a/Lib/test/test_math.py
+++ b/Lib/test/test_math.py
@@ -1881,11 +1881,11 @@ class MathTests(unittest.TestCase):
self.assertFalse(math.isinf(0.))
self.assertFalse(math.isinf(1.))
- @requires_IEEE_754
def test_nan_constant(self):
+ # `math.nan` must be a quiet NaN with positive sign bit
self.assertTrue(math.isnan(math.nan))
+ self.assertEqual(math.copysign(1., math.nan), 1.)
- @requires_IEEE_754
def test_inf_constant(self):
self.assertTrue(math.isinf(math.inf))
self.assertGreater(math.inf, 0.0)
diff --git a/Misc/NEWS.d/next/Core and Builtins/2023-05-08-10-34-55.gh-issue-104263.ctHWI8.rst b/Misc/NEWS.d/next/Core and Builtins/2023-05-08-10-34-55.gh-issue-104263.ctHWI8.rst
new file mode 100644
index 00000000000..342467cfcd4
--- /dev/null
+++ b/Misc/NEWS.d/next/Core and Builtins/2023-05-08-10-34-55.gh-issue-104263.ctHWI8.rst
@@ -0,0 +1,6 @@
+Fix ``float("nan")`` to produce a quiet NaN on platforms (like MIPS) where
+the meaning of the signalling / quiet bit is inverted from its usual
+meaning. Also introduce a new macro ``Py_INFINITY`` matching C99's
+``INFINITY``, and refactor internals to rely on C99's ``NAN`` and
+``INFINITY`` macros instead of hard-coding bit patterns for infinities and
+NaNs. Thanks Sebastian Berg.
diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c
index 914a697f8e1..1a31bdc824b 100644
--- a/Modules/cmathmodule.c
+++ b/Modules/cmathmodule.c
@@ -8,7 +8,6 @@
#include "Python.h"
#include "pycore_pymath.h" // _PY_SHORT_FLOAT_REPR
-#include "pycore_dtoa.h" // _Py_dg_stdnan()
/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
float.h. We assume that FLT_RADIX is either 2 or 16. */
#include <float.h>
@@ -88,53 +87,6 @@ else {
#endif
#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
-/* Constants cmath.inf, cmath.infj, cmath.nan, cmath.nanj.
- cmath.nan and cmath.nanj are defined only when either
- _PY_SHORT_FLOAT_REPR is 1 (which should be
- the most common situation on machines using an IEEE 754
- representation), or Py_NAN is defined. */
-
-static double
-m_inf(void)
-{
-#if _PY_SHORT_FLOAT_REPR == 1
- return _Py_dg_infinity(0);
-#else
- return Py_HUGE_VAL;
-#endif
-}
-
-static Py_complex
-c_infj(void)
-{
- Py_complex r;
- r.real = 0.0;
- r.imag = m_inf();
- return r;
-}
-
-#if _PY_SHORT_FLOAT_REPR == 1
-
-static double
-m_nan(void)
-{
-#if _PY_SHORT_FLOAT_REPR == 1
- return _Py_dg_stdnan(0);
-#else
- return Py_NAN;
-#endif
-}
-
-static Py_complex
-c_nanj(void)
-{
- Py_complex r;
- r.real = 0.0;
- r.imag = m_nan();
- return r;
-}
-
-#endif
/* forward declarations */
static Py_complex cmath_asinh_impl(PyObject *, Py_complex);
@@ -1274,23 +1226,22 @@ cmath_exec(PyObject *mod)
if (PyModule_AddObject(mod, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
return -1;
}
- if (PyModule_AddObject(mod, "inf", PyFloat_FromDouble(m_inf())) < 0) {
+ if (PyModule_AddObject(mod, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) {
return -1;
}
+ Py_complex infj = {0.0, Py_INFINITY};
if (PyModule_AddObject(mod, "infj",
- PyComplex_FromCComplex(c_infj())) < 0) {
+ PyComplex_FromCComplex(infj)) < 0) {
return -1;
}
-#if _PY_SHORT_FLOAT_REPR == 1
- if (PyModule_AddObject(mod, "nan", PyFloat_FromDouble(m_nan())) < 0) {
+ if (PyModule_AddObject(mod, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) {
return -1;
}
- if (PyModule_AddObject(mod, "nanj",
- PyComplex_FromCComplex(c_nanj())) < 0) {
+ Py_complex nanj = {0.0, fabs(Py_NAN)};
+ if (PyModule_AddObject(mod, "nanj", PyComplex_FromCComplex(nanj)) < 0) {
return -1;
}
-#endif
/* initialize special value tables */
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index 3737a965457..f369b2c45ce 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -59,7 +59,6 @@ raised for division by zero and mod by zero.
#include "Python.h"
#include "pycore_bitutils.h" // _Py_bit_length()
#include "pycore_call.h" // _PyObject_CallNoArgs()
-#include "pycore_dtoa.h" // _Py_dg_infinity()
#include "pycore_long.h" // _PyLong_GetZero()
#include "pycore_moduleobject.h" // _PyModule_GetState()
#include "pycore_object.h" // _PyObject_LookupSpecial()
@@ -389,34 +388,6 @@ lanczos_sum(double x)
return num/den;
}
-/* Constant for +infinity, generated in the same way as float('inf'). */
-
-static double
-m_inf(void)
-{
-#if _PY_SHORT_FLOAT_REPR == 1
- return _Py_dg_infinity(0);
-#else
- return Py_HUGE_VAL;
-#endif
-}
-
-/* Constant nan value, generated in the same way as float('nan'). */
-/* We don't currently assume that Py_NAN is defined everywhere. */
-
-#if _PY_SHORT_FLOAT_REPR == 1
-
-static double
-m_nan(void)
-{
-#if _PY_SHORT_FLOAT_REPR == 1
- return _Py_dg_stdnan(0);
-#else
- return Py_NAN;
-#endif
-}
-
-#endif
static double
m_tgamma(double x)
@@ -435,7 +406,7 @@ m_tgamma(double x)
if (x == 0.0) {
errno = EDOM;
/* tgamma(+-0.0) = +-inf, divide-by-zero */
- return copysign(Py_HUGE_VAL, x);
+ return copysign(Py_INFINITY, x);
}
/* integer arguments */
@@ -3938,7 +3909,7 @@ math_ulp_impl(PyObject *module, double x)
if (Py_IS_INFINITY(x)) {
return x;
}
- double inf = m_inf();
+ double inf = Py_INFINITY;
double x2 = nextafter(x, inf);
if (Py_IS_INFINITY(x2)) {
/* special case: x is the largest positive representable float */
@@ -3975,14 +3946,12 @@ math_exec(PyObject *module)
if (PyModule_AddObject(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
return -1;
}
- if (PyModule_AddObject(module, "inf", PyFloat_FromDouble(m_inf())) < 0) {
+ if (PyModule_AddObject(module, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) {
return -1;
}
-#if _PY_SHORT_FLOAT_REPR == 1
- if (PyModule_AddObject(module, "nan", PyFloat_FromDouble(m_nan())) < 0) {
+ if (PyModule_AddObject(module, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) {
return -1;
}
-#endif
return 0;
}
diff --git a/Objects/floatobject.c b/Objects/floatobject.c
index d257857d9c6..83a263c0d9c 100644
--- a/Objects/floatobject.c
+++ b/Objects/floatobject.c
@@ -2424,25 +2424,14 @@ PyFloat_Unpack2(const char *data, int le)
f |= *p;
if (e == 0x1f) {
-#if _PY_SHORT_FLOAT_REPR == 0
if (f == 0) {
/* Infinity */
return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
}
else {
/* NaN */
- return sign ? -Py_NAN : Py_NAN;
+ return sign ? -fabs(Py_NAN) : fabs(Py_NAN);
}
-#else // _PY_SHORT_FLOAT_REPR == 1
- if (f == 0) {
- /* Infinity */
- return _Py_dg_infinity(sign);
- }
- else {
- /* NaN */
- return _Py_dg_stdnan(sign);
- }
-#endif // _PY_SHORT_FLOAT_REPR == 1
}
x = (double)f / 1024.0;
diff --git a/Python/dtoa.c b/Python/dtoa.c
index 6ea60ac9946..c5e343b82f7 100644
--- a/Python/dtoa.c
+++ b/Python/dtoa.c
@@ -273,11 +273,6 @@ typedef union { double d; ULong L[2]; } U;
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff
-/* Standard NaN used by _Py_dg_stdnan. */
-
-#define NAN_WORD0 0x7ff80000
-#define NAN_WORD1 0
-
/* Bits of the representation of positive infinity. */
#define POSINF_WORD0 0x7ff00000
@@ -1399,35 +1394,6 @@ bigcomp(U *rv, const char *s0, BCinfo *bc)
return 0;
}
-/* Return a 'standard' NaN value.
-
- There are exactly two quiet NaNs that don't arise by 'quieting' signaling
- NaNs (see IEEE 754-2008, section 6.2.1). If sign == 0, return the one whose
- sign bit is cleared. Otherwise, return the one whose sign bit is set.
-*/
-
-double
-_Py_dg_stdnan(int sign)
-{
- U rv;
- word0(&rv) = NAN_WORD0;
- word1(&rv) = NAN_WORD1;
- if (sign)
- word0(&rv) |= Sign_bit;
- return dval(&rv);
-}
-
-/* Return positive or negative infinity, according to the given sign (0 for
- * positive infinity, 1 for negative infinity). */
-
-double
-_Py_dg_infinity(int sign)
-{
- U rv;
- word0(&rv) = POSINF_WORD0;
- word1(&rv) = POSINF_WORD1;
- return sign ? -dval(&rv) : dval(&rv);
-}
double
_Py_dg_strtod(const char *s00, char **se)
diff --git a/Python/pystrtod.c b/Python/pystrtod.c
index d77b846f040..9bb060e3d11 100644
--- a/Python/pystrtod.c
+++ b/Python/pystrtod.c
@@ -23,44 +23,6 @@ case_insensitive_match(const char *s, const char *t)
return the NaN or Infinity as a double and set *endptr to point just beyond
the successfully parsed portion of the string. On failure, return -1.0 and
set *endptr to point to the start of the string. */
-
-#if _PY_SHORT_FLOAT_REPR == 1
-
-double
-_Py_parse_inf_or_nan(const char *p, char **endptr)
-{
- double retval;
- const char *s;
- int negate = 0;
-
- s = p;
- if (*s == '-') {
- negate = 1;
- s++;
- }
- else if (*s == '+') {
- s++;
- }
- if (case_insensitive_match(s, "inf")) {
- s += 3;
- if (case_insensitive_match(s, "inity"))
- s += 5;
- retval = _Py_dg_infinity(negate);
- }
- else if (case_insensitive_match(s, "nan")) {
- s += 3;
- retval = _Py_dg_stdnan(negate);
- }
- else {
- s = p;
- retval = -1.0;
- }
- *endptr = (char *)s;
- return retval;
-}
-
-#else
-
double
_Py_parse_inf_or_nan(const char *p, char **endptr)
{
@@ -84,7 +46,7 @@ _Py_parse_inf_or_nan(const char *p, char **endptr)
}
else if (case_insensitive_match(s, "nan")) {
s += 3;
- retval = negate ? -Py_NAN : Py_NAN;
+ retval = negate ? -fabs(Py_NAN) : fabs(Py_NAN);
}
else {
s = p;
@@ -94,7 +56,6 @@ _Py_parse_inf_or_nan(const char *p, char **endptr)
return retval;
}
-#endif
/**
* _PyOS_ascii_strtod: