diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2024-03-24 11:35:58 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-24 04:35:58 -0500 |
commit | a1e948edba9ec6ba61365429857f7a087c5edf51 (patch) | |
tree | 1cf07e589f0624d4fececa0da52c074fdb6ccc3b /Lib/statistics.py | |
parent | d610d821fd210dce63a1132c274ffdf8acc510bc (diff) | |
download | cpython-a1e948edba9ec6ba61365429857f7a087c5edf51.tar.gz cpython-a1e948edba9ec6ba61365429857f7a087c5edf51.zip |
Add cumulative option for the new statistics.kde() function. (#117033)
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r-- | Lib/statistics.py | 67 |
1 files changed, 52 insertions, 15 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py index 5d636258fd4..58fb31def88 100644 --- a/Lib/statistics.py +++ b/Lib/statistics.py @@ -138,7 +138,7 @@ from decimal import Decimal from itertools import count, groupby, repeat from bisect import bisect_left, bisect_right from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod -from math import isfinite, isinf, pi, cos, cosh +from math import isfinite, isinf, pi, cos, sin, cosh, atan from functools import reduce from operator import itemgetter from collections import Counter, namedtuple, defaultdict @@ -803,9 +803,9 @@ def multimode(data): return [value for value, count in counts.items() if count == maxcount] -def kde(data, h, kernel='normal'): - """Kernel Density Estimation: Create a continuous probability - density function from discrete samples. +def kde(data, h, kernel='normal', *, cumulative=False): + """Kernel Density Estimation: Create a continuous probability density + function or cumulative distribution function from discrete samples. The basic idea is to smooth the data using a kernel function to help draw inferences about a population from a sample. @@ -820,20 +820,22 @@ def kde(data, h, kernel='normal'): Kernels that give some weight to every sample point: - normal or gauss + normal (gauss) logistic sigmoid Kernels that only give weight to sample points within the bandwidth: - rectangular or uniform + rectangular (uniform) triangular - parabolic or epanechnikov - quartic or biweight + parabolic (epanechnikov) + quartic (biweight) triweight cosine + If *cumulative* is true, will return a cumulative distribution function. + A StatisticsError will be raised if the data sequence is empty. Example @@ -847,7 +849,8 @@ def kde(data, h, kernel='normal'): Compute the area under the curve: - >>> sum(f_hat(x) for x in range(-20, 20)) + >>> area = sum(f_hat(x) for x in range(-20, 20)) + >>> round(area, 4) 1.0 Plot the estimated probability density function at @@ -876,6 +879,13 @@ def kde(data, h, kernel='normal'): 9: 0.009 x 10: 0.002 x + Estimate P(4.5 < X <= 7.5), the probability that a new sample value + will be between 4.5 and 7.5: + + >>> cdf = kde(sample, h=1.5, cumulative=True) + >>> round(cdf(7.5) - cdf(4.5), 2) + 0.22 + References ---------- @@ -888,6 +898,9 @@ def kde(data, h, kernel='normal'): Interactive graphical demonstration and exploration: https://demonstrations.wolfram.com/KernelDensityEstimation/ + Kernel estimation of cumulative distribution function of a random variable with bounded support + https://www.econstor.eu/bitstream/10419/207829/1/10.21307_stattrans-2016-037.pdf + """ n = len(data) @@ -903,45 +916,56 @@ def kde(data, h, kernel='normal'): match kernel: case 'normal' | 'gauss': - c = 1 / sqrt(2 * pi) - K = lambda t: c * exp(-1/2 * t * t) + sqrt2pi = sqrt(2 * pi) + sqrt2 = sqrt(2) + K = lambda t: exp(-1/2 * t * t) / sqrt2pi + I = lambda t: 1/2 * (1.0 + erf(t / sqrt2)) support = None case 'logistic': # 1.0 / (exp(t) + 2.0 + exp(-t)) K = lambda t: 1/2 / (1.0 + cosh(t)) + I = lambda t: 1.0 - 1.0 / (exp(t) + 1.0) support = None case 'sigmoid': # (2/pi) / (exp(t) + exp(-t)) - c = 1 / pi - K = lambda t: c / cosh(t) + c1 = 1 / pi + c2 = 2 / pi + K = lambda t: c1 / cosh(t) + I = lambda t: c2 * atan(exp(t)) support = None case 'rectangular' | 'uniform': K = lambda t: 1/2 + I = lambda t: 1/2 * t + 1/2 support = 1.0 case 'triangular': K = lambda t: 1.0 - abs(t) + I = lambda t: t*t * (1/2 if t < 0.0 else -1/2) + t + 1/2 support = 1.0 case 'parabolic' | 'epanechnikov': K = lambda t: 3/4 * (1.0 - t * t) + I = lambda t: -1/4 * t**3 + 3/4 * t + 1/2 support = 1.0 case 'quartic' | 'biweight': K = lambda t: 15/16 * (1.0 - t * t) ** 2 + I = lambda t: 3/16 * t**5 - 5/8 * t**3 + 15/16 * t + 1/2 support = 1.0 case 'triweight': K = lambda t: 35/32 * (1.0 - t * t) ** 3 + I = lambda t: 35/32 * (-1/7*t**7 + 3/5*t**5 - t**3 + t) + 1/2 support = 1.0 case 'cosine': c1 = pi / 4 c2 = pi / 2 K = lambda t: c1 * cos(c2 * t) + I = lambda t: 1/2 * sin(c2 * t) + 1/2 support = 1.0 case _: @@ -952,6 +976,9 @@ def kde(data, h, kernel='normal'): def pdf(x): return sum(K((x - x_i) / h) for x_i in data) / (n * h) + def cdf(x): + return sum(I((x - x_i) / h) for x_i in data) / n + else: sample = sorted(data) @@ -963,9 +990,19 @@ def kde(data, h, kernel='normal'): supported = sample[i : j] return sum(K((x - x_i) / h) for x_i in supported) / (n * h) - pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}' + def cdf(x): + i = bisect_left(sample, x - bandwidth) + j = bisect_right(sample, x + bandwidth) + supported = sample[i : j] + return sum((I((x - x_i) / h) for x_i in supported), i) / n - return pdf + if cumulative: + cdf.__doc__ = f'CDF estimate with {h=!r} and {kernel=!r}' + return cdf + + else: + pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}' + return pdf # Notes on methods for computing quantiles |