diff options
author | Tim Peters <tim.peters@gmail.com> | 2004-07-18 06:16:08 +0000 |
---|---|---|
committer | Tim Peters <tim.peters@gmail.com> | 2004-07-18 06:16:08 +0000 |
commit | 182b5aca27d376b08a2904bed42b751496f932f3 (patch) | |
tree | df13115820dbc879c0fe2eae488c9f8c0215a7da /Lib/lib-old/poly.py | |
parent | e6ddc8b20b493fef2e7cffb2e1351fe1d238857e (diff) | |
download | cpython-182b5aca27d376b08a2904bed42b751496f932f3.tar.gz cpython-182b5aca27d376b08a2904bed42b751496f932f3.zip |
Whitespace normalization, via reindent.py.
Diffstat (limited to 'Lib/lib-old/poly.py')
-rw-r--r-- | Lib/lib-old/poly.py | 60 |
1 files changed, 30 insertions, 30 deletions
diff --git a/Lib/lib-old/poly.py b/Lib/lib-old/poly.py index f89bd142872..fe6a1dcc265 100644 --- a/Lib/lib-old/poly.py +++ b/Lib/lib-old/poly.py @@ -6,47 +6,47 @@ # taken out by normalize(). def normalize(p): # Strip unnecessary zero coefficients - n = len(p) - while n: - if p[n-1]: return p[:n] - n = n-1 - return [] + n = len(p) + while n: + if p[n-1]: return p[:n] + n = n-1 + return [] def plus(a, b): - if len(a) < len(b): a, b = b, a # make sure a is the longest - res = a[:] # make a copy - for i in range(len(b)): - res[i] = res[i] + b[i] - return normalize(res) + if len(a) < len(b): a, b = b, a # make sure a is the longest + res = a[:] # make a copy + for i in range(len(b)): + res[i] = res[i] + b[i] + return normalize(res) def minus(a, b): - neg_b = map(lambda x: -x, b[:]) - return plus(a, neg_b) + neg_b = map(lambda x: -x, b[:]) + return plus(a, neg_b) def one(power, coeff): # Representation of coeff * x**power - res = [] - for i in range(power): res.append(0) - return res + [coeff] + res = [] + for i in range(power): res.append(0) + return res + [coeff] def times(a, b): - res = [] - for i in range(len(a)): - for j in range(len(b)): - res = plus(res, one(i+j, a[i]*b[j])) - return res + res = [] + for i in range(len(a)): + for j in range(len(b)): + res = plus(res, one(i+j, a[i]*b[j])) + return res def power(a, n): # Raise polynomial a to the positive integral power n - if n == 0: return [1] - if n == 1: return a - if n/2*2 == n: - b = power(a, n/2) - return times(b, b) - return times(power(a, n-1), a) + if n == 0: return [1] + if n == 1: return a + if n/2*2 == n: + b = power(a, n/2) + return times(b, b) + return times(power(a, n-1), a) def der(a): # First derivative - res = a[1:] - for i in range(len(res)): - res[i] = res[i] * (i+1) - return res + res = a[1:] + for i in range(len(res)): + res[i] = res[i] * (i+1) + return res # Computing a primitive function would require rational arithmetic... |