1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
|
#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include "std.h"
#include "font_petme128_8x8.h"
void delay_ms(int ms);
void impl02_c_version() {
int x = 0;
while (x < 400) {
int y = 0;
while (y < 400) {
volatile int z = 0;
while (z < 400) {
z = z + 1;
}
y = y + 1;
}
x = x + 1;
}
}
void set_bits(__IO uint32_t *addr, uint32_t shift, uint32_t mask, uint32_t value) {
uint32_t x = *addr;
x &= ~(mask << shift);
x |= (value << shift);
*addr = x;
}
void gpio_init() {
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN;
}
#define PYB_LEDR_PORT (GPIOA)
#define PYB_LEDR1_PORT_NUM (8)
#define PYB_LEDR2_PORT_NUM (10)
#define PYB_LEDG_PORT (GPIOC)
#define PYB_LEDG1_PORT_NUM (4)
#define PYB_LEDG2_PORT_NUM (5)
void gpio_pin_init(GPIO_TypeDef *gpio, uint32_t pin, uint32_t moder, uint32_t otyper, uint32_t ospeedr, uint32_t pupdr) {
set_bits(&gpio->MODER, 2 * pin, 3, moder);
set_bits(&gpio->OTYPER, pin, 1, otyper);
set_bits(&gpio->OSPEEDR, 2 * pin, 3, ospeedr);
set_bits(&gpio->PUPDR, 2 * pin, 3, pupdr);
}
void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) {
// set the AF bits for the given pin
// pins 0-7 use low word of AFR, pins 8-15 use high word
set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af);
}
void mma_init() {
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1
gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */);
gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */);
// get clock speeds
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
// disable the I2C peripheral before we configure it
I2C1->CR1 &= ~I2C_CR1_PE;
// program peripheral input clock
I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz)
// configure clock control reg
uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq
I2C1->CCR = freq; // standard mode (speed), freq calculated as above
// configure rise time reg
I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time
// enable the I2C peripheral
I2C1->CR1 |= I2C_CR1_PE;
// set START bit in CR1 to generate a start cond!
}
uint32_t i2c_get_sr() {
// must read SR1 first, then SR2, as the read can clear some flags
uint32_t sr1 = I2C1->SR1;
uint32_t sr2 = I2C1->SR2;
return (sr2 << 16) | sr1;
}
void mma_restart(uint8_t addr, int write) {
// send start condition
I2C1->CR1 |= I2C_CR1_START;
// wait for BUSY, MSL and SB --> Slave has acknowledged start condition
while ((i2c_get_sr() & 0x00030001) != 0x00030001) {
}
if (write) {
// send address and write bit
I2C1->DR = (addr << 1) | 0;
// wait for BUSY, MSL, ADDR, TXE and TRA
while ((i2c_get_sr() & 0x00070082) != 0x00070082) {
}
} else {
// send address and read bit
I2C1->DR = (addr << 1) | 1;
// wait for BUSY, MSL and ADDR flags
while ((i2c_get_sr() & 0x00030002) != 0x00030002) {
}
}
}
void mma_start(uint8_t addr, int write) {
// wait until I2C is not busy
while (I2C1->SR2 & I2C_SR2_BUSY) {
}
// do rest of start
mma_restart(addr, write);
}
void mma_send_byte(uint8_t data) {
// send byte
I2C1->DR = data;
// wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted)
int timeout = 1000000;
while ((i2c_get_sr() & 0x00070084) != 0x00070084) {
if (timeout-- <= 0) {
printf("mma_send_byte timed out!\n");
break;
}
}
}
uint8_t mma_read_ack() {
// enable ACK of received byte
I2C1->CR1 |= I2C_CR1_ACK;
// wait for BUSY, MSL and RXNE (byte received)
while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
}
// read and return data
uint8_t data = I2C1->DR;
return data;
}
uint8_t mma_read_nack() {
// disable ACK of received byte (to indicate end of receiving)
I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK);
// last byte should apparently also generate a stop condition
I2C1->CR1 |= I2C_CR1_STOP;
// wait for BUSY, MSL and RXNE (byte received)
while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
}
// read and return data
uint8_t data = I2C1->DR;
return data;
}
void mma_stop() {
// send stop condition
I2C1->CR1 |= I2C_CR1_STOP;
}
void led_init() {
// set the output high (so LED is off)
PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR1_PORT_NUM;
PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR2_PORT_NUM;
PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG1_PORT_NUM;
PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG2_PORT_NUM;
// make it an open drain output
gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR1_PORT_NUM, 1, 1, 0, 0);
gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR2_PORT_NUM, 1, 1, 0, 0);
gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG1_PORT_NUM, 1, 1, 0, 0);
gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG2_PORT_NUM, 1, 1, 0, 0);
}
static void led_state(uint32_t led_port, int s) {
if (s == 0) {
// LED off, output is high
if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
PYB_LEDR_PORT->BSRRL = 1 << led_port;
} else {
PYB_LEDG_PORT->BSRRL = 1 << led_port;
}
} else {
// LED on, output is low
if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
PYB_LEDR_PORT->BSRRH = 1 << led_port;
} else {
PYB_LEDG_PORT->BSRRH = 1 << led_port;
}
}
}
#define PYB_USRSW_PORT (GPIOA)
#define PYB_USRSW_PORT_NUM (13)
void sw_init() {
// make it an input with pull-up
gpio_pin_init(PYB_USRSW_PORT, PYB_USRSW_PORT_NUM, 0, 0, 0, 1);
}
int sw_get() {
if (PYB_USRSW_PORT->IDR & (1 << PYB_USRSW_PORT_NUM)) {
// pulled high, so switch is not pressed
return 0;
} else {
// pulled low, so switch is pressed
return 1;
}
}
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (0)
#define PYB_LCD_RST_PIN (1)
#define PYB_LCD_A0_PIN (2)
#define PYB_LCD_SCL_PIN (3)
#define PYB_LCD_SI_PIN (4)
static void lcd_comm_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_A0_PIN; // A0=0; select instr reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
/*
in Python, native types:
CS1_PIN(const) = 0
n = int(0)
delay_ms(0)
PORT[word:BSRRH] = 1 << CS1_PIN
for n in range(0, 8):
delay_ms(0)
PORT[word:BSRRH] = 1 << SCL_PIN
if i & 0x80 == 0:
PORT[word:BSRRH] = 1 << SI_PIN
else:
PORT[word:BSRRL] = 1 << SI_PIN
i <<= 1
delay_ms(0)
PORT[word:BSRRL] = 1 << SCL_PIN
*/
}
static void lcd_data_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN; // A0=1; select data reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
}
#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;
void lcd_print_strn(const char *str, unsigned int len) {
int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
int redraw_max = redraw_min;
int did_new_line = 0;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd_next_line) {
if (lcd_line + 1 < LCD_BUF_H) {
lcd_line += 1;
} else {
lcd_line = LCD_BUF_H - 1;
for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
lcd_buffer[i] = lcd_buffer[i + LCD_BUF_W];
}
for (int i = 0; i < LCD_BUF_W; i++) {
lcd_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_BUF_W * LCD_BUF_H;
}
lcd_next_line = 0;
lcd_column = 0;
did_new_line = 1;
}
if (*str == '\n') {
lcd_next_line = 1;
} else if (lcd_column >= LCD_BUF_W) {
lcd_next_line = 1;
str -= 1;
len += 1;
} else {
lcd_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
lcd_column += 1;
int max = lcd_line * LCD_BUF_W + lcd_column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
int last_page = -1;
for (int i = redraw_min; i < redraw_max; i++) {
int page = i / LCD_BUF_W;
if (page != last_page) {
int offset = 8 * (i - (page * LCD_BUF_W));
lcd_comm_out(0xb0 | page); // page address set
lcd_comm_out(0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_comm_out(0x00 | (offset & 0x0f)); // column address set lower
last_page = page;
}
int chr = lcd_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int i = 0; i < 8; i++) {
lcd_data_out(chr_data[i]);
}
}
if (did_new_line) {
delay_ms(200);
}
}
static void lcd_init() {
// set the outputs high
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN;
// make them push/pull outputs
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_CS1_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_RST_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_A0_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SCL_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SI_PIN, 1, 0, 0, 0);
// init the LCD
delay_ms(1); // wait a bit
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_RST_PIN; // RST=0; reset
delay_ms(1); // wait for reset; 2us min
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN; // RST=1; enable
delay_ms(1); // wait for reset; 2us min
lcd_comm_out(0xa0); // ADC select, normal
lcd_comm_out(0xc8); // common output mode select, reverse
lcd_comm_out(0xa2); // LCD bias set, 1/9 bias
lcd_comm_out(0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_comm_out(0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_comm_out(0x81); // electronic volume mode set
lcd_comm_out(0x34); // electronic volume register set, 0b110100
lcd_comm_out(0x40); // display start line set, 0
lcd_comm_out(0xaf); // LCD display, on
// clear display
for (int page = 0; page < 4; page++) {
lcd_comm_out(0xb0 | page); // page address set
lcd_comm_out(0x10); // column address set upper
lcd_comm_out(0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_data_out(0x00);
}
}
for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
lcd_buffer[i] = ' ';
}
lcd_line = 0;
lcd_column = 0;
lcd_next_line = 0;
}
void __fatal_error(const char *msg) {
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
for (;;) {
led_state(PYB_LEDR1_PORT_NUM, 1);
led_state(PYB_LEDR2_PORT_NUM, 0);
delay_ms(150);
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDR2_PORT_NUM, 1);
delay_ms(150);
}
}
#include "misc.h"
#include "lexer.h"
#include "mpyconfig.h"
#include "parse.h"
#include "compile.h"
#include "runtime.h"
/*
py_obj_t pyb_delay(py_obj_t count) {
delay_ms(rt_get_int(count));
return py_const_none;
}
py_obj_t pyb_led(py_obj_t state) {
led_state(PYB_LEDG1_PORT_NUM, rt_is_true(state));
return state;
}
py_obj_t pyb_sw() {
if (sw_get()) {
return py_const_true;
} else {
return py_const_false;
}
}
*/
#include "asmthumb.h"
typedef void (*fun_t)();
#include "ff.h"
FATFS fatfs0;
int main() {
// should disable JTAG
//qstr_init();
//rt_init();
gpio_init();
led_init();
sw_init();
lcd_init();
// print a message
printf(" micro py board\n");
// flash to indicate we are alive!
for (int i = 0; i < 2; i++) {
led_state(PYB_LEDR1_PORT_NUM, 1);
led_state(PYB_LEDR2_PORT_NUM, 0);
delay_ms(200);
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDR2_PORT_NUM, 1);
delay_ms(200);
}
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDR2_PORT_NUM, 0);
led_state(PYB_LEDG1_PORT_NUM, 0);
led_state(PYB_LEDG2_PORT_NUM, 0);
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
/*
{
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu H=%lu P1=%lu P2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
delay_ms(1000);
}
*/
/*
extern int _sidata;
extern int _sdata;
extern int _edata;
extern int _sbss;
extern int _ebss;
delay_ms(2000);
printf("_sidata=%04x\n", _sidata);
printf("_sdata=%04x\n", _sdata);
printf("_edata=%04x\n", _edata);
printf("_sbss=%04x\n", _sbss);
printf("_ebss=%04x\n", _ebss);
//printf("sizeof(int)=%d\n", sizeof(int)); // 4
delay_ms(2000);
*/
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
//delay_ms(1000);
#if 0
// Python!
if (0) {
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
const char *pysrc =
// impl01.py
/*
"x = 0\n"
"while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n";
*/
// impl02.py
"#@micropython.native\n"
"def f():\n"
" x = 0\n"
" while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n"
"f()\n";
/*
"print('in python!')\n"
"x = 0\n"
"while x < 4:\n"
" pyb_led(True)\n"
" pyb_delay(201)\n"
" pyb_led(False)\n"
" pyb_delay(201)\n"
" x = x + 1\n"
"print('press me!')\n"
"while True:\n"
" pyb_led(pyb_sw())\n";
*/
/*
// impl16.py
"@micropython.asm_thumb\n"
"def delay(r0):\n"
" b(loop_entry)\n"
" label(loop1)\n"
" movw(r1, 55999)\n"
" label(loop2)\n"
" subs(r1, r1, 1)\n"
" cmp(r1, 0)\n"
" bgt(loop2)\n"
" subs(r0, r0, 1)\n"
" label(loop_entry)\n"
" cmp(r0, 0)\n"
" bgt(loop1)\n"
"print('in python!')\n"
"@micropython.native\n"
"def flash(n):\n"
" x = 0\n"
" while x < n:\n"
" pyb_led(True)\n"
" delay(249)\n"
" pyb_led(False)\n"
" delay(249)\n"
" x = x + 1\n"
"flash(20)\n";
*/
py_lexer_t *lex = py_lexer_from_str_len("<>", pysrc, strlen(pysrc), false);
if (0) {
while (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
py_token_show(py_lexer_cur(lex));
py_lexer_to_next(lex);
delay_ms(1000);
}
} else {
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
printf("lex; al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
py_parse_node_t pn = py_parse(lex, 0);
//printf("----------------\n");
printf("pars;al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
//parse_node_show(pn, 0);
py_compile(pn);
printf("comp;al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
if (1) {
// execute it!
// add some functions to the python namespace
rt_store_name(qstr_from_str_static("pyb_delay"), rt_make_function_1(pyb_delay));
rt_store_name(qstr_from_str_static("pyb_led"), rt_make_function_1(pyb_led));
rt_store_name(qstr_from_str_static("pyb_sw"), rt_make_function_0(pyb_sw));
py_obj_t module_fun = rt_make_function_from_id(1);
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
py_obj_t ret = rt_call_function_0(module_fun);
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
printf("done! got: ");
py_obj_print(ret);
printf("\n");
delay_ms(1000);
printf("nalloc=%u\n", m_get_total_bytes_allocated());
delay_ms(1000);
}
}
}
#endif
// benchmark C version of impl02.py
if (0) {
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
impl02_c_version();
led_state(PYB_LEDG1_PORT_NUM, 1);
delay_ms(100);
led_state(PYB_LEDG1_PORT_NUM, 0);
}
// MMA testing
if (0) {
printf("1");
mma_init();
printf("2");
mma_start(0x4c, 1);
printf("3");
mma_send_byte(0);
printf("4");
mma_stop();
printf("5");
mma_start(0x4c, 1);
printf("6");
mma_send_byte(0);
printf("7");
mma_restart(0x4c, 0);
for (int i = 0; i <= 0xa; i++) {
int data;
if (i == 0xa) {
data = mma_read_nack();
} else {
data = mma_read_ack();
}
printf(" %02x", data);
}
printf("\n");
mma_start(0x4c, 1);
mma_send_byte(7); // mode
mma_send_byte(1); // active mode
mma_stop();
for (;;) {
delay_ms(500);
mma_start(0x4c, 1);
mma_send_byte(0);
mma_restart(0x4c, 0);
for (int i = 0; i <= 3; i++) {
int data;
if (i == 3) {
data = mma_read_nack();
printf(" %02x\n", data);
} else {
data = mma_read_ack() & 0x3f;
if (data & 0x20) {
data |= 0xc0;
}
printf(" % 2d", data);
}
}
}
}
// fatfs testing
if (1) {
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (res == FR_OK) {
printf("mount success\n");
} else if (res == FR_NO_FILESYSTEM) {
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
printf("mkfs success\n");
} else {
printf("mkfs fail %d\n", res);
}
} else {
printf("mount fail %d\n", res);
}
// write a file
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, "# this is boot.py\n", 18, &n);
printf("wrote %d\n", n);
f_close(&fp);
}
// read a file
if (1) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_READ);
UINT n;
char buf[20];
f_read(&fp, buf, 18, &n);
buf[n + 1] = 0;
printf("read %d\n%s", n, buf);
f_close(&fp);
}
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("free=%d\n", nclst * fatfs->csize * 512);
}
// SD card testing
if (0) {
//sdio_init();
}
// USB VCP testing
if (0) {
//usb_vcp_init();
}
// USB MSC testing
if (1) {
void usb_msc_init();
usb_msc_init();
}
int i = 0;
int n = 0;
for (;;) {
delay_ms(10);
if (sw_get()) {
led_state(PYB_LEDR1_PORT_NUM, 1);
led_state(PYB_LEDG1_PORT_NUM, 0);
i = 1 - i;
if (i) {
printf(" angel %05x.\n", n);
//usb_vcp_send("hello!\r\n", 8);
} else {
printf(" mishka %4u.\n", n);
//usb_vcp_send("angel!\r\n", 8);
}
n += 1;
} else {
led_state(PYB_LEDR1_PORT_NUM, 0);
led_state(PYB_LEDG1_PORT_NUM, 1);
}
}
return 0;
}
/*
void testf() {
testf(1, 2, 3);
testf(1, 2, 3, 4);
testf(1, 2, 3, 4, 5);
testf(1, 2, 3, 4, 5, 6);
testf(1, 2, 3, 4, 5, 6, 7);
}
int testg(int a, int b, int c, int d, int e) {
return a + b + c + d + testh(e);
}
int testh(int x, byte *y) {
return x + (y[-2] << 2);
}
*/
/*
void print_int(int x, int y, int z, int zz) {
printf("I %x %x %x %x", x, y, z, zz);
byte* ptr = (byte*)z;
printf("\nP %02x %02x %02x %02x", ptr[-4], ptr[-3], ptr[-2], ptr[-1]);
for (;;) {
}
}
void print_int_0(int x) { printf("P0 %x", x); }
void print_int_1(int x) { printf("P1 %x", x); }
void print_int_2(int x) { printf("P2 %x", x); }
void print_int_3(int x) { printf("P3 %x", x); }
void print_int_4(int x) { printf("P4 %x", x); }
typedef struct _b_t {
void (*m1)(void*, int);
void (*m2)(void*, int);
} b_t;
typedef struct _a_t {
b_t *b;
} a_t;
void b_m1(b_t*, int);
void b_m2(b_t*, int);
void f1(a_t *a) {
a->b->m1(a->b, 2);
a->b->m2(a->b, 4);
b_m1(a->b, 2);
b_m2(a->b, 4);
}
void b_m1(b_t *b, int x) {
b->m1(b, x);
}
*/
|