summaryrefslogtreecommitdiffstatshomepage
path: root/py/runtime.c
blob: 5490bcbac51f1ff3c6c643d5fc429f4ee03a9a61 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "objmodule.h"
#include "parsenum.h"
#include "runtime0.h"
#include "runtime.h"
#include "emitglue.h"
#include "builtin.h"
#include "builtintables.h"
#include "bc.h"
#include "smallint.h"
#include "objgenerator.h"
#include "lexer.h"
#include "stackctrl.h"

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif

// locals and globals need to be pointers because they can be the same in outer module scope
STATIC mp_obj_dict_t *dict_locals;
STATIC mp_obj_dict_t *dict_globals;

// dictionary for the __main__ module
STATIC mp_obj_dict_t dict_main;

const mp_obj_module_t mp_module___main__ = {
    .base = { &mp_type_module },
    .name = MP_QSTR___main__,
    .globals = (mp_obj_dict_t*)&dict_main,
};

void mp_init(void) {
    mp_stack_ctrl_init();

    // call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
    MICROPY_PORT_INIT_FUNC;
#endif

    // optimization disabled by default
    mp_optimise_value = 0;

    // init global module stuff
    mp_module_init();

    // initialise the __main__ module
    mp_obj_dict_init(&dict_main, 1);
    mp_obj_dict_store(&dict_main, MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));

    // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
    dict_locals = dict_globals = &dict_main;
}

void mp_deinit(void) {
    //mp_obj_dict_free(&dict_main);
    mp_module_deinit();

    // call port specific deinitialization if any 
#ifdef MICROPY_PORT_INIT_FUNC
    MICROPY_PORT_DEINIT_FUNC;
#endif
}

mp_obj_t mp_load_const_int(qstr qstr) {
    DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
    uint len;
    const byte* data = qstr_data(qstr, &len);
    return mp_parse_num_integer((const char*)data, len, 0);
}

mp_obj_t mp_load_const_dec(qstr qstr) {
    DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
    uint len;
    const byte* data = qstr_data(qstr, &len);
    return mp_parse_num_decimal((const char*)data, len, true, false);
}

mp_obj_t mp_load_const_str(qstr qstr) {
    DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
    return MP_OBJ_NEW_QSTR(qstr);
}

mp_obj_t mp_load_const_bytes(qstr qstr) {
    DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr));
    uint len;
    const byte *data = qstr_data(qstr, &len);
    return mp_obj_new_bytes(data, len);
}

mp_obj_t mp_load_name(qstr qstr) {
    // logic: search locals, globals, builtins
    DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
    // If we're at the outer scope (locals == globals), dispatch to load_global right away
    if (dict_locals != dict_globals) {
        mp_map_elem_t *elem = mp_map_lookup(&dict_locals->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
        if (elem != NULL) {
            return elem->value;
        }
    }
    return mp_load_global(qstr);
}

mp_obj_t mp_load_global(qstr qstr) {
    // logic: search globals, builtins
    DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
    mp_map_elem_t *elem = mp_map_lookup(&dict_globals->map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
    if (elem == NULL) {
        // TODO lookup in dynamic table of builtins first
        elem = mp_map_lookup((mp_map_t*)&mp_builtin_object_dict_obj.map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
        if (elem == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%s' is not defined", qstr_str(qstr)));
        }
    }
    return elem->value;
}

mp_obj_t mp_load_build_class(void) {
    DEBUG_OP_printf("load_build_class\n");
    // TODO lookup __build_class__ in dynamic table of builtins first
    // ... else no user-defined __build_class__, return builtin one
    return (mp_obj_t)&mp_builtin___build_class___obj;
}

void mp_store_name(qstr qstr, mp_obj_t obj) {
    DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
    mp_obj_dict_store(dict_locals, MP_OBJ_NEW_QSTR(qstr), obj);
}

void mp_delete_name(qstr qstr) {
    DEBUG_OP_printf("delete name %s\n", qstr_str(qstr));
    // TODO convert KeyError to NameError if qstr not found
    mp_obj_dict_delete(dict_locals, MP_OBJ_NEW_QSTR(qstr));
}

void mp_store_global(qstr qstr, mp_obj_t obj) {
    DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
    mp_obj_dict_store(dict_globals, MP_OBJ_NEW_QSTR(qstr), obj);
}

void mp_delete_global(qstr qstr) {
    DEBUG_OP_printf("delete global %s\n", qstr_str(qstr));
    // TODO convert KeyError to NameError if qstr not found
    mp_obj_dict_delete(dict_globals, MP_OBJ_NEW_QSTR(qstr));
}

mp_obj_t mp_unary_op(int op, mp_obj_t arg) {
    DEBUG_OP_printf("unary %d %p\n", op, arg);

    if (MP_OBJ_IS_SMALL_INT(arg)) {
        mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
        switch (op) {
            case MP_UNARY_OP_BOOL:
                return MP_BOOL(val != 0);
            case MP_UNARY_OP_POSITIVE:
                return arg;
            case MP_UNARY_OP_NEGATIVE:
                // check for overflow
                if (val == MP_SMALL_INT_MIN) {
                    return mp_obj_new_int(-val);
                } else {
                    return MP_OBJ_NEW_SMALL_INT(-val);
                }
            case MP_UNARY_OP_INVERT:
                return MP_OBJ_NEW_SMALL_INT(~val);
            default:
                assert(0);
                return arg;
        }
    } else {
        mp_obj_type_t *type = mp_obj_get_type(arg);
        if (type->unary_op != NULL) {
            mp_obj_t result = type->unary_op(op, arg);
            if (result != MP_OBJ_NULL) {
                return result;
            }
        }
        // TODO specify in error message what the operator is
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "bad operand type for unary operator: '%s'", mp_obj_get_type_str(arg)));
    }
}

mp_obj_t mp_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
    DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);

    // TODO correctly distinguish inplace operators for mutable objects
    // lookup logic that CPython uses for +=:
    //   check for implemented +=
    //   then check for implemented +
    //   then check for implemented seq.inplace_concat
    //   then check for implemented seq.concat
    //   then fail
    // note that list does not implement + or +=, so that inplace_concat is reached first for +=

    // deal with is
    if (op == MP_BINARY_OP_IS) {
        return MP_BOOL(lhs == rhs);
    }

    // deal with == and != for all types
    if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
        if (mp_obj_equal(lhs, rhs)) {
            if (op == MP_BINARY_OP_EQUAL) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        } else {
            if (op == MP_BINARY_OP_EQUAL) {
                return mp_const_false;
            } else {
                return mp_const_true;
            }
        }
    }

    // deal with exception_match for all types
    if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
        // rhs must be issubclass(rhs, BaseException)
        if (mp_obj_is_exception_type(rhs)) {
            // if lhs is an instance of an exception, then extract and use its type
            if (mp_obj_is_exception_instance(lhs)) {
                lhs = mp_obj_get_type(lhs);
            }
            if (mp_obj_is_subclass_fast(lhs, rhs)) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        }
        assert(0);
        return mp_const_false;
    }

    if (MP_OBJ_IS_SMALL_INT(lhs)) {
        mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
        if (MP_OBJ_IS_SMALL_INT(rhs)) {
            mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
            // This is a binary operation: lhs_val op rhs_val
            // We need to be careful to handle overflow; see CERT INT32-C
            // Operations that can overflow:
            //      +       result always fits in machine_int_t, then handled by SMALL_INT check
            //      -       result always fits in machine_int_t, then handled by SMALL_INT check
            //      *       checked explicitly
            //      /       if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
            //      %       if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
            //      <<      checked explicitly
            switch (op) {
                case MP_BINARY_OP_OR:
                case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
                case MP_BINARY_OP_XOR:
                case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
                case MP_BINARY_OP_AND:
                case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
                case MP_BINARY_OP_LSHIFT:
                case MP_BINARY_OP_INPLACE_LSHIFT: {
                    if (rhs_val < 0) {
                        // negative shift not allowed
                        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
                    } else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
                        // left-shift will overflow, so use higher precision integer
                        lhs = mp_obj_new_int_from_ll(lhs_val);
                        goto generic_binary_op;
                    } else {
                        // use standard precision
                        lhs_val <<= rhs_val;
                    }
                    break;
                }
                case MP_BINARY_OP_RSHIFT:
                case MP_BINARY_OP_INPLACE_RSHIFT:
                    if (rhs_val < 0) {
                        // negative shift not allowed
                        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
                    } else {
                        // standard precision is enough for right-shift
                        lhs_val >>= rhs_val;
                    }
                    break;
                case MP_BINARY_OP_ADD:
                case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
                case MP_BINARY_OP_SUBTRACT:
                case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
                case MP_BINARY_OP_MULTIPLY:
                case MP_BINARY_OP_INPLACE_MULTIPLY: {

                    // If long long type exists and is larger than machine_int_t, then
                    // we can use the following code to perform overflow-checked multiplication.
                    // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
                    #if 0
                    // compute result using long long precision
                    long long res = (long long)lhs_val * (long long)rhs_val;
                    if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
                        // result overflowed SMALL_INT, so return higher precision integer
                        return mp_obj_new_int_from_ll(res);
                    } else {
                        // use standard precision
                        lhs_val = (mp_small_int_t)res;
                    }
                    #endif

                    if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
                        // use higher precision
                        lhs = mp_obj_new_int_from_ll(lhs_val);
                        goto generic_binary_op;
                    } else {
                        // use standard precision
                        return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
                    }
                    break;
                }
                case MP_BINARY_OP_FLOOR_DIVIDE:
                case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
                    break;

                #if MICROPY_PY_BUILTINS_FLOAT
                case MP_BINARY_OP_TRUE_DIVIDE:
                case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
                #endif

                case MP_BINARY_OP_MODULO:
                case MP_BINARY_OP_INPLACE_MODULO: {
                    lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
                    break;
                }

                case MP_BINARY_OP_POWER:
                case MP_BINARY_OP_INPLACE_POWER:
                    if (rhs_val < 0) {
                        #if MICROPY_PY_BUILTINS_FLOAT
                        lhs = mp_obj_new_float(lhs_val);
                        goto generic_binary_op;
                        #else
                        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
                        #endif
                    } else {
                        machine_int_t ans = 1;
                        while (rhs_val > 0) {
                            if (rhs_val & 1) {
                                if (mp_small_int_mul_overflow(ans, lhs_val)) {
                                    goto power_overflow;
                                }
                                ans *= lhs_val;
                            }
                            if (rhs_val == 1) {
                                break;
                            }
                            rhs_val /= 2;
                            if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
                                goto power_overflow;
                            }
                            lhs_val *= lhs_val;
                        }
                        lhs_val = ans;
                    }
                    break;

                power_overflow:
                    // use higher precision
                    lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
                    goto generic_binary_op;

                case MP_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
                case MP_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
                case MP_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
                case MP_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;

                default:
                    goto unsupported_op;
            }
            // TODO: We just should make mp_obj_new_int() inline and use that
            if (MP_SMALL_INT_FITS(lhs_val)) {
                return MP_OBJ_NEW_SMALL_INT(lhs_val);
            } else {
                return mp_obj_new_int(lhs_val);
            }
#if MICROPY_PY_BUILTINS_FLOAT
        } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
            mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
            if (res == MP_OBJ_NULL) {
                goto unsupported_op;
            } else {
                return res;
            }
#if MICROPY_PY_BUILTINS_COMPLEX
        } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
            mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
            if (res == MP_OBJ_NULL) {
                goto unsupported_op;
            } else {
                return res;
            }
#endif
#endif
        }
    }

    /* deal with `in`
     *
     * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
     * needs to go below with swapped arguments
     */
    if (op == MP_BINARY_OP_IN) {
        mp_obj_type_t *type = mp_obj_get_type(rhs);
        if (type->binary_op != NULL) {
            mp_obj_t res = type->binary_op(op, rhs, lhs);
            if (res != MP_OBJ_NULL) {
                return res;
            }
        }
        if (type->getiter != NULL) {
            /* second attempt, walk the iterator */
            mp_obj_t next = NULL;
            mp_obj_t iter = mp_getiter(rhs);
            while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
                if (mp_obj_equal(next, lhs)) {
                    return mp_const_true;
                }
            }
            return mp_const_false;
        }

        nlr_raise(mp_obj_new_exception_msg_varg(
                     &mp_type_TypeError, "'%s' object is not iterable",
                     mp_obj_get_type_str(rhs)));
        return mp_const_none;
    }

    // generic binary_op supplied by type
    mp_obj_type_t *type;
generic_binary_op:
    type = mp_obj_get_type(lhs);
    if (type->binary_op != NULL) {
        mp_obj_t result = type->binary_op(op, lhs, rhs);
        if (result != MP_OBJ_NULL) {
            return result;
        }
    }

    // TODO implement dispatch for reverse binary ops

    // TODO specify in error message what the operator is
unsupported_op:
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
        "unsupported operand types for binary operator: '%s', '%s'",
        mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
    return mp_const_none;

zero_division:
    nlr_raise(mp_obj_new_exception_msg(&mp_type_ZeroDivisionError, "division by zero"));
}

mp_obj_t mp_call_function_0(mp_obj_t fun) {
    return mp_call_function_n_kw(fun, 0, 0, NULL);
}

mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
    return mp_call_function_n_kw(fun, 1, 0, &arg);
}

mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
    mp_obj_t args[2];
    args[0] = arg1;
    args[1] = arg2;
    return mp_call_function_n_kw(fun, 2, 0, args);
}

// wrapper that accepts n_args and n_kw in one argument
// native emitter can only pass at most 3 arguments to a function
mp_obj_t mp_call_function_n_kw_for_native(mp_obj_t fun_in, uint n_args_kw, const mp_obj_t *args) {
    return mp_call_function_n_kw(fun_in, n_args_kw & 0xff, (n_args_kw >> 8) & 0xff, args);
}

// args contains, eg: arg0  arg1  key0  value0  key1  value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) {
    // TODO improve this: fun object can specify its type and we parse here the arguments,
    // passing to the function arrays of fixed and keyword arguments

    DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args);

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(fun_in);

    // do the call
    if (type->call != NULL) {
        return type->call(fun_in, n_args, n_kw, args);
    }

    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in)));
}

// args contains: fun  self/NULL  arg(0)  ...  arg(n_args-2)  arg(n_args-1)  kw_key(0)  kw_val(0)  ... kw_key(n_kw-1)  kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) {
    DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args);
    int adjust = (args[1] == NULL) ? 0 : 1;
    return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}

mp_obj_t mp_call_method_n_kw_var(bool have_self, uint n_args_n_kw, const mp_obj_t *args) {
    mp_obj_t fun = *args++;
    mp_obj_t self = MP_OBJ_NULL;
    if (have_self) {
        self = *args++; // may be MP_OBJ_NULL
    }
    uint n_args = n_args_n_kw & 0xff;
    uint n_kw = (n_args_n_kw >> 8) & 0xff;
    mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // map be MP_OBJ_NULL
    mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // map be MP_OBJ_NULL

    DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);

    // We need to create the following array of objects:
    //     args[0 .. n_args]  unpacked(pos_seq)  args[n_args .. n_args + 2 * n_kw]  unpacked(kw_dict)
    // TODO: optimize one day to avoid constructing new arg array? Will be hard.

    // The new args array
    mp_obj_t *args2;
    uint args2_alloc;
    uint args2_len = 0;

    // Try to get a hint for the size of the kw_dict
    uint kw_dict_len = 0;
    if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
        kw_dict_len = mp_obj_dict_len(kw_dict);
    }

    // Extract the pos_seq sequence to the new args array.
    // Note that it can be arbitrary iterator.
    if (pos_seq == MP_OBJ_NULL) {
        // no sequence

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
        args2 = m_new(mp_obj_t, args2_alloc);

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed pos args
        mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
        args2_len += n_args;

    } else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
        // optimise the case of a tuple and list

        // get the items
        uint len;
        mp_obj_t *items;
        mp_obj_get_array(pos_seq, &len, &items);

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
        args2 = m_new(mp_obj_t, args2_alloc);

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed and variable position args
        mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
        args2_len += n_args + len;

    } else {
        // generic iterator

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
        args2 = m_new(mp_obj_t, args2_alloc);

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed position args
        mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);

        // extract the variable position args from the iterator
        mp_obj_t iterable = mp_getiter(pos_seq);
        mp_obj_t item;
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            if (args2_len >= args2_alloc) {
                args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2);
                args2_alloc *= 2;
            }
            args2[args2_len++] = item;
        }
    }

    // The size of the args2 array now is the number of positional args.
    uint pos_args_len = args2_len;

    // Copy the fixed kw args.
    mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
    args2_len += 2 * n_kw;

    // Extract (key,value) pairs from kw_dict dictionary and append to args2.
    // Note that it can be arbitrary iterator.
    if (kw_dict == MP_OBJ_NULL) {
        // pass
    } else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
        // dictionary
        mp_map_t *map = mp_obj_dict_get_map(kw_dict);
        assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
        for (uint i = 0; i < map->alloc; i++) {
            if (map->table[i].key != MP_OBJ_NULL) {
                args2[args2_len++] = map->table[i].key;
                args2[args2_len++] = map->table[i].value;
            }
        }
    } else {
        // generic mapping
        // TODO is calling 'items' on the mapping the correct thing to do here?
        mp_obj_t dest[2];
        mp_load_method(kw_dict, MP_QSTR_items, dest);
        mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest));
        mp_obj_t item;
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            if (args2_len + 1 >= args2_alloc) {
                uint new_alloc = args2_alloc * 2;
                if (new_alloc < 4) {
                    new_alloc = 4;
                }
                args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc);
                args2_alloc = new_alloc;
            }
            mp_obj_t *items;
            mp_obj_get_array_fixed_n(item, 2, &items);
            args2[args2_len++] = items[0];
            args2[args2_len++] = items[1];
        }
    }

    mp_obj_t res = mp_call_function_n_kw(fun, pos_args_len, (args2_len - pos_args_len) / 2, args2);
    m_del(mp_obj_t, args2, args2_alloc);

    return res;
}

// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) {
    uint seq_len;
    if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
        mp_obj_t *seq_items;
        if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
            mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
        } else {
            mp_obj_list_get(seq_in, &seq_len, &seq_items);
        }
        if (seq_len < num) {
            goto too_short;
        } else if (seq_len > num) {
            goto too_long;
        }
        for (uint i = 0; i < num; i++) {
            items[i] = seq_items[num - 1 - i];
        }
    } else {
        mp_obj_t iterable = mp_getiter(seq_in);

        for (seq_len = 0; seq_len < num; seq_len++) {
            mp_obj_t el = mp_iternext(iterable);
            if (el == MP_OBJ_STOP_ITERATION) {
                goto too_short;
            }
            items[num - 1 - seq_len] = el;
        }
        if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
            goto too_long;
        }
    }
    return;

too_short:
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len));
too_long:
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", num));
}

// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, uint num_in, mp_obj_t *items) {
    uint num_left = num_in & 0xff;
    uint num_right = (num_in >> 8) & 0xff;
    DEBUG_OP_printf("unpack ex %d %d\n", num_left, num_right);
    uint seq_len;
    if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
        mp_obj_t *seq_items;
        if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
            mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
        } else {
            if (num_left == 0 && num_right == 0) {
                // *a, = b # sets a to b if b is a list
                items[0] = seq_in;
                return;
            }
            mp_obj_list_get(seq_in, &seq_len, &seq_items);
        }
        if (seq_len < num_left + num_right) {
            goto too_short;
        }
        for (uint i = 0; i < num_right; i++) {
            items[i] = seq_items[seq_len - 1 - i];
        }
        items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
        for (uint i = 0; i < num_left; i++) {
            items[num_right + 1 + i] = seq_items[num_left - 1 - i];
        }
    } else {
        // Generic iterable; this gets a bit messy: we unpack known left length to the
        // items destination array, then the rest to a dynamically created list.  Once the
        // iterable is exhausted, we take from this list for the right part of the items.
        // TODO Improve to waste less memory in the dynamically created list.
        mp_obj_t iterable = mp_getiter(seq_in);
        mp_obj_t item;
        for (seq_len = 0; seq_len < num_left; seq_len++) {
            item = mp_iternext(iterable);
            if (item == MP_OBJ_STOP_ITERATION) {
                goto too_short;
            }
            items[num_left + num_right + 1 - 1 - seq_len] = item;
        }
        mp_obj_t rest = mp_obj_new_list(0, NULL);
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            mp_obj_list_append(rest, item);
        }
        uint rest_len;
        mp_obj_t *rest_items;
        mp_obj_list_get(rest, &rest_len, &rest_items);
        if (rest_len < num_right) {
            goto too_short;
        }
        items[num_right] = rest;
        for (uint i = 0; i < num_right; i++) {
            items[num_right - 1 - i] = rest_items[rest_len - num_right + i];
        }
        mp_obj_list_set_len(rest, rest_len - num_right);
    }
    return;

too_short:
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len));
}

mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
    DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
    // use load_method
    mp_obj_t dest[2];
    mp_load_method(base, attr, dest);
    if (dest[1] == MP_OBJ_NULL) {
        // load_method returned just a normal attribute
        return dest[0];
    } else {
        // load_method returned a method, so build a bound method object
        return mp_obj_new_bound_meth(dest[0], dest[1]);
    }
}

// no attribute found, returns:     dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>,    dest[1] == <self>
void mp_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) {
    // clear output to indicate no attribute/method found yet
    dest[0] = MP_OBJ_NULL;
    dest[1] = MP_OBJ_NULL;

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(base);

    // look for built-in names
    if (0) {
#if MICROPY_CPYTHON_COMPAT
    } else if (attr == MP_QSTR___class__) {
        // a.__class__ is equivalent to type(a)
        dest[0] = type;
#endif

    } else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
        dest[0] = (mp_obj_t)&mp_builtin_next_obj;
        dest[1] = base;

    } else if (type->load_attr != NULL) {
        // this type can do its own load, so call it
        type->load_attr(base, attr, dest);

    } else if (type->locals_dict != NULL) {
        // generic method lookup
        // this is a lookup in the object (ie not class or type)
        assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now
        mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
        mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
        if (elem != NULL) {
            // check if the methods are functions, static or class methods
            // see http://docs.python.org/3/howto/descriptor.html
            if (MP_OBJ_IS_TYPE(elem->value, &mp_type_staticmethod)) {
                // return just the function
                dest[0] = ((mp_obj_static_class_method_t*)elem->value)->fun;
            } else if (MP_OBJ_IS_TYPE(elem->value, &mp_type_classmethod)) {
                // return a bound method, with self being the type of this object
                dest[0] = ((mp_obj_static_class_method_t*)elem->value)->fun;
                dest[1] = mp_obj_get_type(base);
            } else if (MP_OBJ_IS_TYPE(elem->value, &mp_type_type)) {
                // Don't try to bind types
                dest[0] = elem->value;
            } else if (mp_obj_is_callable(elem->value)) {
                // return a bound method, with self being this object
                dest[0] = elem->value;
                dest[1] = base;
            } else {
                // class member is a value, so just return that value
                dest[0] = elem->value;
            }
        }
    }
}

void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
    DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));

    mp_load_method_maybe(base, attr, dest);

    if (dest[0] == MP_OBJ_NULL) {
        // no attribute/method called attr
        // following CPython, we give a more detailed error message for type objects
        if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                "type object '%s' has no attribute '%s'", qstr_str(((mp_obj_type_t*)base)->name), qstr_str(attr)));
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
        }
    }
}

void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
    DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
    mp_obj_type_t *type = mp_obj_get_type(base);
    if (type->store_attr != NULL) {
        if (type->store_attr(base, attr, value)) {
            return;
        }
    }
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
}

mp_obj_t mp_getiter(mp_obj_t o_in) {
    assert(o_in);
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->getiter != NULL) {
        mp_obj_t iter = type->getiter(o_in);
        if (iter == MP_OBJ_NULL) {
            goto not_iterable;
        }
        return iter;
    } else {
        // check for __iter__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___iter__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __iter__ exists, call it and return its result
            return mp_call_method_n_kw(0, 0, dest);
        } else {
            mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
            if (dest[0] != MP_OBJ_NULL) {
                // __getitem__ exists, create an iterator
                return mp_obj_new_getitem_iter(dest);
            } else {
                // object not iterable
not_iterable:
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in)));
            }
        }
    }
}

// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        // check for __next__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __next__ exists, call it and return its result
            return mp_call_method_n_kw(0, 0, dest);
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
        }
    }
}

// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        // check for __next__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __next__ exists, call it and return its result
            nlr_buf_t nlr;
            if (nlr_push(&nlr) == 0) {
                mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
                nlr_pop();
                return ret;
            } else {
                if (mp_obj_is_subclass_fast(mp_obj_get_type(nlr.ret_val), &mp_type_StopIteration)) {
                    return MP_OBJ_STOP_ITERATION;
                } else {
                    nlr_raise(nlr.ret_val);
                }
            }
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
        }
    }
}

// TODO: Unclear what to do with StopIterarion exception here.
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
    assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
    mp_obj_type_t *type = mp_obj_get_type(self_in);

    if (type == &mp_type_gen_instance) {
        return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
    }

    if (type->iternext != NULL && send_value == mp_const_none) {
        mp_obj_t ret = type->iternext(self_in);
        if (ret != MP_OBJ_NULL) {
            *ret_val = ret;
            return MP_VM_RETURN_YIELD;
        } else {
            // Emulate raise StopIteration()
            // Special case, handled in vm.c
            *ret_val = MP_OBJ_NULL;
            return MP_VM_RETURN_NORMAL;
        }
    }

    mp_obj_t dest[3]; // Reserve slot for send() arg

    if (send_value == mp_const_none) {
        mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            *ret_val = mp_call_method_n_kw(0, 0, dest);
            return MP_VM_RETURN_YIELD;
        }
    }

    if (send_value != MP_OBJ_NULL) {
        mp_load_method(self_in, MP_QSTR_send, dest);
        dest[2] = send_value;
        *ret_val = mp_call_method_n_kw(1, 0, dest);
        return MP_VM_RETURN_YIELD;
    }

    if (throw_value != MP_OBJ_NULL) {
        if (mp_obj_is_subclass_fast(mp_obj_get_type(throw_value), &mp_type_GeneratorExit)) {
            mp_load_method_maybe(self_in, MP_QSTR_close, dest);
            if (dest[0] != MP_OBJ_NULL) {
                *ret_val = mp_call_method_n_kw(0, 0, dest);
                // We assume one can't "yield" from close()
                return MP_VM_RETURN_NORMAL;
            }
        }
        mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
        if (dest[0] != MP_OBJ_NULL) {
            *ret_val = mp_call_method_n_kw(1, 0, &throw_value);
            // If .throw() method returned, we assume it's value to yield
            // - any exception would be thrown with nlr_raise().
            return MP_VM_RETURN_YIELD;
        }
        // If there's nowhere to throw exception into, then we assume that object
        // is just incapable to handle it, so any exception thrown into it
        // will be propagated up. This behavior is approved by test_pep380.py
        // test_delegation_of_close_to_non_generator(),
        //  test_delegating_throw_to_non_generator()
        *ret_val = throw_value;
        return MP_VM_RETURN_EXCEPTION;
    }

    assert(0);
    return MP_VM_RETURN_NORMAL; // Should be unreachable
}

mp_obj_t mp_make_raise_obj(mp_obj_t o) {
    DEBUG_printf("raise %p\n", o);
    if (mp_obj_is_exception_type(o)) {
        // o is an exception type (it is derived from BaseException (or is BaseException))
        // create and return a new exception instance by calling o
        // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
        // could have const instances in ROM which we return here instead
        return mp_call_function_n_kw(o, 0, 0, NULL);
    } else if (mp_obj_is_exception_instance(o)) {
        // o is an instance of an exception, so use it as the exception
        return o;
    } else {
        // o cannot be used as an exception, so return a type error (which will be raised by the caller)
        return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
    }
}

mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
    DEBUG_printf("import name %s\n", qstr_str(name));

    // build args array
    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(name);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = fromlist;
    args[4] = level; // must be 0; we don't yet support other values

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);
}

mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
    DEBUG_printf("import from %p %s\n", module, qstr_str(name));

    mp_obj_t dest[2];

    mp_load_method_maybe(module, name, dest);

    if (dest[1] != MP_OBJ_NULL) {
        // Hopefully we can't import bound method from an object
import_error:
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %s", qstr_str(name)));
    }

    if (dest[0] != MP_OBJ_NULL) {
        return dest[0];
    }

    // See if it's a package, then can try FS import
    mp_load_method_maybe(module, MP_QSTR___path__, dest);
    if (dest[0] == MP_OBJ_NULL) {
        goto import_error;
    }

    mp_load_method_maybe(module, MP_QSTR___name__, dest);
    uint pkg_name_len;
    const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);

    const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
    char *dot_name = alloca(dot_name_len);
    memcpy(dot_name, pkg_name, pkg_name_len);
    dot_name[pkg_name_len] = '.';
    memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
    qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);

    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
    args[4] = MP_OBJ_NEW_SMALL_INT(0);

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);
}

void mp_import_all(mp_obj_t module) {
    DEBUG_printf("import all %p\n", module);

    // TODO: Support __all__
    mp_map_t *map = mp_obj_dict_get_map(mp_obj_module_get_globals(module));
    for (uint i = 0; i < map->alloc; i++) {
        if (MP_MAP_SLOT_IS_FILLED(map, i)) {
            qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
            if (*qstr_str(name) != '_') {
                mp_store_name(name, map->table[i].value);
            }
        }
    }
}

mp_obj_dict_t *mp_locals_get(void) {
    return dict_locals;
}

void mp_locals_set(mp_obj_dict_t *d) {
    DEBUG_OP_printf("mp_locals_set(%p)\n", d);
    dict_locals = d;
}

mp_obj_dict_t *mp_globals_get(void) {
    return dict_globals;
}

void mp_globals_set(mp_obj_dict_t *d) {
    DEBUG_OP_printf("mp_globals_set(%p)\n", d);
    dict_globals = d;
}

void *m_malloc_fail(int num_bytes) {
    DEBUG_printf("memory allocation failed, allocating %d bytes\n", num_bytes);
    nlr_raise((mp_obj_t)&mp_const_MemoryError_obj);
}

NORETURN void mp_not_implemented(const char *msg) {
    nlr_raise(mp_obj_new_exception_msg(&mp_type_NotImplementedError, msg));
}

// these must correspond to the respective enum
void *const mp_fun_table[MP_F_NUMBER_OF] = {
    mp_load_const_int,
    mp_load_const_dec,
    mp_load_const_str,
    mp_load_name,
    mp_load_global,
    mp_load_build_class,
    mp_load_attr,
    mp_load_method,
    mp_store_name,
    mp_store_attr,
    mp_obj_subscr,
    mp_obj_is_true,
    mp_unary_op,
    mp_binary_op,
    mp_obj_new_tuple,
    mp_obj_new_list,
    mp_obj_list_append,
    mp_obj_new_dict,
    mp_obj_dict_store,
#if MICROPY_PY_BUILTINS_SET
    mp_obj_new_set,
    mp_obj_set_store,
#endif
    mp_make_function_from_raw_code,
    mp_call_function_n_kw_for_native,
    mp_call_method_n_kw,
    mp_getiter,
    mp_iternext,
    mp_import_name,
    mp_import_from,
    mp_import_all,
#if MICROPY_PY_BUILTINS_SLICE
    mp_obj_new_slice,
#endif
    mp_unpack_sequence,
    mp_unpack_ex,
};

/*
void mp_f_vector(mp_fun_kind_t fun_kind) {
    (mp_f_table[fun_kind])();
}
*/