summaryrefslogtreecommitdiffstatshomepage
path: root/py/runtime.c
blob: 0d9906ea607a77534fa2392e734badfcc6d1c6d1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args
// mp_xxx functions are safer and can be called by anyone
// note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "runtime0.h"
#include "runtime.h"
#include "map.h"
#include "builtin.h"
#include "objarray.h"
#include "bc.h"

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define WRITE_CODE (1)
#define DEBUG_printf(args...) printf(args)
#define DEBUG_OP_printf(args...) printf(args)
#else // don't print debugging info
#define DEBUG_printf(args...) (void)0
#define DEBUG_OP_printf(args...) (void)0
#endif

// locals and globals need to be pointers because they can be the same in outer module scope
static mp_map_t *map_locals;
static mp_map_t *map_globals;
static mp_map_t map_builtins;
static mp_map_t map_loaded_modules; // TODO: expose as sys.modules

typedef enum {
    MP_CODE_NONE,
    MP_CODE_BYTE,
    MP_CODE_NATIVE,
    MP_CODE_INLINE_ASM,
} mp_code_kind_t;

typedef struct _mp_code_t {
    mp_code_kind_t kind;
    int n_args;
    int n_locals;
    int n_stack;
    bool is_generator;
    union {
        struct {
            byte *code;
            uint len;
        } u_byte;
        struct {
            mp_fun_t fun;
        } u_native;
        struct {
            void *fun;
        } u_inline_asm;
    };
} mp_code_t;

static int next_unique_code_id;
static machine_uint_t unique_codes_alloc = 0;
static mp_code_t *unique_codes = NULL;

#ifdef WRITE_CODE
FILE *fp_write_code = NULL;
#endif

// a good optimising compiler will inline this if necessary
static void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) {
    mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
}

void rt_init(void) {
    // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
    map_locals = map_globals = mp_map_new(1);
    mp_map_add_qstr(map_globals, MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR___main__));

    // init built-in hash table
    mp_map_init(&map_builtins, 3);

    // init loaded modules table
    mp_map_init(&map_loaded_modules, 3);

    // built-in exceptions (TODO, make these proper classes)
    mp_map_add_qstr(&map_builtins, MP_QSTR_AttributeError, mp_obj_new_exception(MP_QSTR_AttributeError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_IndexError, mp_obj_new_exception(MP_QSTR_IndexError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_KeyError, mp_obj_new_exception(MP_QSTR_KeyError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_NameError, mp_obj_new_exception(MP_QSTR_NameError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_TypeError, mp_obj_new_exception(MP_QSTR_TypeError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_SyntaxError, mp_obj_new_exception(MP_QSTR_SyntaxError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_ValueError, mp_obj_new_exception(MP_QSTR_ValueError));
    // Somehow CPython managed to have OverflowError not inherit from ValueError ;-/
    // TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation
    mp_map_add_qstr(&map_builtins, MP_QSTR_OverflowError, mp_obj_new_exception(MP_QSTR_OverflowError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_OSError, mp_obj_new_exception(MP_QSTR_OSError));
    mp_map_add_qstr(&map_builtins, MP_QSTR_AssertionError, mp_obj_new_exception(MP_QSTR_AssertionError));

    // built-in objects
    mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis);

    // built-in core functions
    mp_map_add_qstr(&map_builtins, MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj);

    // built-in types
    mp_map_add_qstr(&map_builtins, MP_QSTR_bool, (mp_obj_t)&bool_type);
#if MICROPY_ENABLE_FLOAT
    mp_map_add_qstr(&map_builtins, MP_QSTR_complex, (mp_obj_t)&complex_type);
#endif
    mp_map_add_qstr(&map_builtins, MP_QSTR_dict, (mp_obj_t)&dict_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_enumerate, (mp_obj_t)&enumerate_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_filter, (mp_obj_t)&filter_type);
#if MICROPY_ENABLE_FLOAT
    mp_map_add_qstr(&map_builtins, MP_QSTR_float, (mp_obj_t)&float_type);
#endif
    mp_map_add_qstr(&map_builtins, MP_QSTR_int, (mp_obj_t)&int_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_list, (mp_obj_t)&list_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_map, (mp_obj_t)&map_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_set, (mp_obj_t)&set_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_tuple, (mp_obj_t)&tuple_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_type, (mp_obj_t)&mp_const_type);
    mp_map_add_qstr(&map_builtins, MP_QSTR_zip, (mp_obj_t)&zip_type);

    mp_obj_t m_array = mp_obj_new_module(MP_QSTR_array);
    rt_store_attr(m_array, MP_QSTR_array, (mp_obj_t)&array_type);
    rt_store_name(MP_QSTR_array, m_array);

    // built-in user functions
    mp_map_add_qstr(&map_builtins, MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_bytes, (mp_obj_t)&mp_builtin_bytes_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_str, (mp_obj_t)&mp_builtin_str_obj);
    mp_map_add_qstr(&map_builtins, MP_QSTR_bytearray, (mp_obj_t)&mp_builtin_bytearray_obj);

#if MICROPY_CPYTHON_COMPAT
    // Precreate sys module, so "import sys" didn't throw exceptions.
    mp_obj_new_module(QSTR_FROM_STR_STATIC("sys"));
#endif

    mp_module_micropython_init();

    next_unique_code_id = 1; // 0 indicates "no code"
    unique_codes_alloc = 0;
    unique_codes = NULL;

#ifdef WRITE_CODE
    fp_write_code = fopen("out-code", "wb");
#endif
}

void rt_deinit(void) {
    m_del(mp_code_t, unique_codes, unique_codes_alloc);
#ifdef WRITE_CODE
    if (fp_write_code != NULL) {
        fclose(fp_write_code);
    }
#endif
}

int rt_get_unique_code_id(void) {
    return next_unique_code_id++;
}

static void alloc_unique_codes(void) {
    if (next_unique_code_id > unique_codes_alloc) {
        // increase size of unique_codes table
        unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id);
        for (int i = unique_codes_alloc; i < next_unique_code_id; i++) {
            unique_codes[i].kind = MP_CODE_NONE;
        }
        unique_codes_alloc = next_unique_code_id;
    }
}

void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, bool is_generator) {
    alloc_unique_codes();

    assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
    unique_codes[unique_code_id].kind = MP_CODE_BYTE;
    unique_codes[unique_code_id].n_args = n_args;
    unique_codes[unique_code_id].n_locals = n_locals;
    unique_codes[unique_code_id].n_stack = n_stack;
    unique_codes[unique_code_id].is_generator = is_generator;
    unique_codes[unique_code_id].u_byte.code = code;
    unique_codes[unique_code_id].u_byte.len = len;

    //printf("byte code: %d bytes\n", len);

#ifdef DEBUG_PRINT
    DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args);
    for (int i = 0; i < 128 && i < len; i++) {
        if (i > 0 && i % 16 == 0) {
            DEBUG_printf("\n");
        }
        DEBUG_printf(" %02x", code[i]);
    }
    DEBUG_printf("\n");
#if MICROPY_DEBUG_PRINTERS
    mp_byte_code_print(code, len);
#endif

#ifdef WRITE_CODE
    if (fp_write_code != NULL) {
        fwrite(code, len, 1, fp_write_code);
        fflush(fp_write_code);
    }
#endif
#endif
}

void rt_assign_native_code(int unique_code_id, void *fun, uint len, int n_args) {
    alloc_unique_codes();

    assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
    unique_codes[unique_code_id].kind = MP_CODE_NATIVE;
    unique_codes[unique_code_id].n_args = n_args;
    unique_codes[unique_code_id].n_locals = 0;
    unique_codes[unique_code_id].n_stack = 0;
    unique_codes[unique_code_id].is_generator = false;
    unique_codes[unique_code_id].u_native.fun = fun;

    //printf("native code: %d bytes\n", len);

#ifdef DEBUG_PRINT
    DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
    byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
    for (int i = 0; i < 128 && i < len; i++) {
        if (i > 0 && i % 16 == 0) {
            DEBUG_printf("\n");
        }
        DEBUG_printf(" %02x", fun_data[i]);
    }
    DEBUG_printf("\n");

#ifdef WRITE_CODE
    if (fp_write_code != NULL) {
        fwrite(fun_data, len, 1, fp_write_code);
        fflush(fp_write_code);
    }
#endif
#endif
}

void rt_assign_inline_asm_code(int unique_code_id, void *fun, uint len, int n_args) {
    alloc_unique_codes();

    assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
    unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM;
    unique_codes[unique_code_id].n_args = n_args;
    unique_codes[unique_code_id].n_locals = 0;
    unique_codes[unique_code_id].n_stack = 0;
    unique_codes[unique_code_id].is_generator = false;
    unique_codes[unique_code_id].u_inline_asm.fun = fun;

#ifdef DEBUG_PRINT
    DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
    byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
    for (int i = 0; i < 128 && i < len; i++) {
        if (i > 0 && i % 16 == 0) {
            DEBUG_printf("\n");
        }
        DEBUG_printf(" %02x", fun_data[i]);
    }
    DEBUG_printf("\n");

#ifdef WRITE_CODE
    if (fp_write_code != NULL) {
        fwrite(fun_data, len, 1, fp_write_code);
    }
#endif
#endif
}

int rt_is_true(mp_obj_t arg) {
    DEBUG_OP_printf("is true %p\n", arg);
    if (MP_OBJ_IS_SMALL_INT(arg)) {
        if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) {
            return 0;
        } else {
            return 1;
        }
    } else if (arg == mp_const_none) {
        return 0;
    } else if (arg == mp_const_false) {
        return 0;
    } else if (arg == mp_const_true) {
        return 1;
    } else if (MP_OBJ_IS_STR(arg)) {
        return mp_obj_str_get_len(arg) != 0;
    } else if (MP_OBJ_IS_TYPE(arg, &list_type)) {
        uint len;
        mp_obj_t *dummy;
        mp_obj_list_get(arg, &len, &dummy);
        return len != 0;
    } else if (MP_OBJ_IS_TYPE(arg, &tuple_type)) {
        uint len;
        mp_obj_t *dummy;
        mp_obj_tuple_get(arg, &len, &dummy);
        return len != 0;
    } else if (MP_OBJ_IS_TYPE(arg, &dict_type)) {
        return mp_obj_dict_len(arg) != 0;
    } else {
        assert(0);
        return 0;
    }
}

mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) {
    return mp_obj_list_append(self_in, arg);
}

#define PARSE_DEC_IN_INTG (1)
#define PARSE_DEC_IN_FRAC (2)
#define PARSE_DEC_IN_EXP  (3)

mp_obj_t rt_load_const_dec(qstr qstr) {
#if MICROPY_ENABLE_FLOAT
    DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
    const char *s = qstr_str(qstr);
    int in = PARSE_DEC_IN_INTG;
    mp_float_t dec_val = 0;
    bool exp_neg = false;
    int exp_val = 0;
    int exp_extra = 0;
    bool imag = false;
    for (; *s; s++) {
        int dig = *s;
        if ('0' <= dig && dig <= '9') {
            dig -= '0';
            if (in == PARSE_DEC_IN_EXP) {
                exp_val = 10 * exp_val + dig;
            } else {
                dec_val = 10 * dec_val + dig;
                if (in == PARSE_DEC_IN_FRAC) {
                    exp_extra -= 1;
                }
            }
        } else if (in == PARSE_DEC_IN_INTG && dig == '.') {
            in = PARSE_DEC_IN_FRAC;
        } else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) {
            in = PARSE_DEC_IN_EXP;
            if (s[1] == '+') {
                s++;
            } else if (s[1] == '-') {
                s++;
                exp_neg = true;
            }
        } else if (dig == 'J' || dig == 'j') {
            s++;
            imag = true;
            break;
        } else {
            // unknown character
            break;
        }
    }
    if (*s != 0) {
        nlr_jump(mp_obj_new_exception_msg(MP_QSTR_SyntaxError, "invalid syntax for number"));
    }
    if (exp_neg) {
        exp_val = -exp_val;
    }
    exp_val += exp_extra;
    for (; exp_val > 0; exp_val--) {
        dec_val *= 10;
    }
    for (; exp_val < 0; exp_val++) {
        dec_val *= 0.1;
    }
    if (imag) {
        return mp_obj_new_complex(0, dec_val);
    } else {
        return mp_obj_new_float(dec_val);
    }
#else
    nlr_jump(mp_obj_new_exception_msg(MP_QSTR_SyntaxError, "decimal numbers not supported"));
#endif
}

mp_obj_t rt_load_const_str(qstr qstr) {
    DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
    return MP_OBJ_NEW_QSTR(qstr);
}

mp_obj_t rt_load_name(qstr qstr) {
    // logic: search locals, globals, builtins
    DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
    mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
    if (elem == NULL) {
        elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
        if (elem == NULL) {
            elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
            if (elem == NULL) {
                nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_NameError, "name '%s' is not defined", qstr_str(qstr)));
            }
        }
    }
    return elem->value;
}

mp_obj_t rt_load_global(qstr qstr) {
    // logic: search globals, builtins
    DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
    mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
    if (elem == NULL) {
        elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
        if (elem == NULL) {
            nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_NameError, "name '%s' is not defined", qstr_str(qstr)));
        }
    }
    return elem->value;
}

mp_obj_t rt_load_build_class(void) {
    DEBUG_OP_printf("load_build_class\n");
    mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
    if (elem == NULL) {
        nlr_jump(mp_obj_new_exception_msg(MP_QSTR_NameError, "name '__build_class__' is not defined"));
    }
    return elem->value;
}

mp_obj_t rt_get_cell(mp_obj_t cell) {
    return mp_obj_cell_get(cell);
}

void rt_set_cell(mp_obj_t cell, mp_obj_t val) {
    mp_obj_cell_set(cell, val);
}

void rt_store_name(qstr qstr, mp_obj_t obj) {
    DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
    mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
}

void rt_store_global(qstr qstr, mp_obj_t obj) {
    DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
    mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
}

mp_obj_t rt_unary_op(int op, mp_obj_t arg) {
    DEBUG_OP_printf("unary %d %p\n", op, arg);
    if (MP_OBJ_IS_SMALL_INT(arg)) {
        mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
        switch (op) {
            case RT_UNARY_OP_NOT: if (val != 0) { return mp_const_true;} else { return mp_const_false; }
            case RT_UNARY_OP_POSITIVE: break;
            case RT_UNARY_OP_NEGATIVE: val = -val; break;
            case RT_UNARY_OP_INVERT: val = ~val; break;
            default: assert(0); val = 0;
        }
        if (MP_OBJ_FITS_SMALL_INT(val)) {
            return MP_OBJ_NEW_SMALL_INT(val);
        }
        return mp_obj_new_int(val);
    } else {
        mp_obj_type_t *type = mp_obj_get_type(arg);
        if (type->unary_op != NULL) {
            mp_obj_t result = type->unary_op(op, arg);
            if (result != NULL) {
                return result;
            }
        }
        // TODO specify in error message what the operator is
        nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "bad operand type for unary operator: '%s'", type->name));
    }
}

mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
    DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);

    // TODO correctly distinguish inplace operators for mutable objects
    // lookup logic that CPython uses for +=:
    //   check for implemented +=
    //   then check for implemented +
    //   then check for implemented seq.inplace_concat
    //   then check for implemented seq.concat
    //   then fail
    // note that list does not implement + or +=, so that inplace_concat is reached first for +=

    // deal with is, is not
    if (op == RT_COMPARE_OP_IS) {
        // TODO: may need to handle strings specially, CPython appears to
        // assume all strings are interned (so "is" == "==" for strings)
        return MP_BOOL(lhs == rhs);
    }
    if (op == RT_COMPARE_OP_IS_NOT) {
        // TODO: may need to handle strings specially, CPython appears to
        // assume all strings are interned (so "is" == "==" for strings)
        return MP_BOOL(lhs != rhs);
    }

    // deal with == and != for all types
    if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) {
        if (mp_obj_equal(lhs, rhs)) {
            if (op == RT_COMPARE_OP_EQUAL) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        } else {
            if (op == RT_COMPARE_OP_EQUAL) {
                return mp_const_false;
            } else {
                return mp_const_true;
            }
        }
    }

    // deal with exception_match for all types
    if (op == RT_COMPARE_OP_EXCEPTION_MATCH) {
        // TODO properly! at the moment it just compares the exception identifier for equality
        if (MP_OBJ_IS_TYPE(lhs, &exception_type) && MP_OBJ_IS_TYPE(rhs, &exception_type)) {
            if (mp_obj_exception_get_type(lhs) == mp_obj_exception_get_type(rhs)) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        }
    }

    if (MP_OBJ_IS_SMALL_INT(lhs)) {
        mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
        if (MP_OBJ_IS_SMALL_INT(rhs)) {
            mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
            switch (op) {
                case RT_BINARY_OP_OR:
                case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
                case RT_BINARY_OP_XOR:
                case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
                case RT_BINARY_OP_AND:
                case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
                case RT_BINARY_OP_LSHIFT:
                case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break;
                case RT_BINARY_OP_RSHIFT:
                case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break;
                case RT_BINARY_OP_ADD:
                case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
                case RT_BINARY_OP_SUBTRACT:
                case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
                case RT_BINARY_OP_MULTIPLY:
                case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
                case RT_BINARY_OP_FLOOR_DIVIDE:
                case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break;
    #if MICROPY_ENABLE_FLOAT
                case RT_BINARY_OP_TRUE_DIVIDE:
                case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
    #endif

                // TODO implement modulo as specified by Python
                case RT_BINARY_OP_MODULO:
                case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break;

                // TODO check for negative power, and overflow
                case RT_BINARY_OP_POWER:
                case RT_BINARY_OP_INPLACE_POWER:
                {
                    int ans = 1;
                    while (rhs_val > 0) {
                        if (rhs_val & 1) {
                            ans *= lhs_val;
                        }
                        lhs_val *= lhs_val;
                        rhs_val /= 2;
                    }
                    lhs_val = ans;
                    break;
                }
                case RT_COMPARE_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
                case RT_COMPARE_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
                case RT_COMPARE_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
                case RT_COMPARE_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;

                default: assert(0);
            }
            // TODO: We just should make mp_obj_new_int() inline and use that
            if (MP_OBJ_FITS_SMALL_INT(lhs_val)) {
                return MP_OBJ_NEW_SMALL_INT(lhs_val);
            }
            return mp_obj_new_int(lhs_val);
        } else if (MP_OBJ_IS_TYPE(rhs, &float_type)) {
            return mp_obj_float_binary_op(op, lhs_val, rhs);
        } else if (MP_OBJ_IS_TYPE(rhs, &complex_type)) {
            return mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
        }
    }

    /* deal with `in` and `not in`
     *
     * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
     * needs to go below
     */
    if (op == RT_COMPARE_OP_IN || op == RT_COMPARE_OP_NOT_IN) {
        mp_obj_type_t *type = mp_obj_get_type(rhs);
        if (type->binary_op != NULL) {
            mp_obj_t res = type->binary_op(op, rhs, lhs);
            if (res != NULL) {
                return res;
            }
        }
        if (type->getiter != NULL) {
            /* second attempt, walk the iterator */
            mp_obj_t next = NULL;
            mp_obj_t iter = rt_getiter(rhs);
            while ((next = rt_iternext(iter)) != mp_const_stop_iteration) {
                if (mp_obj_equal(next, lhs)) {
                    return MP_BOOL(op == RT_COMPARE_OP_IN);
                }
            }
            return MP_BOOL(op != RT_COMPARE_OP_IN);
        }

        nlr_jump(mp_obj_new_exception_msg_varg(
                     MP_QSTR_TypeError, "'%s' object is not iterable",
                     mp_obj_get_type_str(rhs)));
        return mp_const_none;
    }

    // generic binary_op supplied by type
    mp_obj_type_t *type = mp_obj_get_type(lhs);
    if (type->binary_op != NULL) {
        mp_obj_t result = type->binary_op(op, lhs, rhs);
        if (result != MP_OBJ_NULL) {
            return result;
        }
    }

    // TODO implement dispatch for reverse binary ops

    // TODO specify in error message what the operator is
    nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError,
        "unsupported operand types for binary operator: '%s', '%s'",
        mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
    return mp_const_none;
}

mp_obj_t rt_make_function_from_id(int unique_code_id) {
    DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id);
    if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) {
        // illegal code id
        return mp_const_none;
    }

    // make the function, depending on the code kind
    mp_code_t *c = &unique_codes[unique_code_id];
    mp_obj_t fun;
    switch (c->kind) {
        case MP_CODE_BYTE:
            fun = mp_obj_new_fun_bc(c->n_args, c->n_locals + c->n_stack, c->u_byte.code);
            break;
        case MP_CODE_NATIVE:
            fun = rt_make_function_n(c->n_args, c->u_native.fun);
            break;
        case MP_CODE_INLINE_ASM:
            fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun);
            break;
        default:
            assert(0);
            fun = mp_const_none;
    }

    // check for generator functions and if so wrap in generator object
    if (c->is_generator) {
        fun = mp_obj_new_gen_wrap(c->n_locals, c->n_stack, fun);
    }

    return fun;
}

mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) {
    DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id);
    // make function object
    mp_obj_t ffun = rt_make_function_from_id(unique_code_id);
    // wrap function in closure object
    return mp_obj_new_closure(ffun, closure_tuple);
}

mp_obj_t rt_call_function_0(mp_obj_t fun) {
    return rt_call_function_n_kw(fun, 0, 0, NULL);
}

mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) {
    return rt_call_function_n_kw(fun, 1, 0, &arg);
}

mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
    mp_obj_t args[2];
    args[0] = arg1;
    args[1] = arg2;
    return rt_call_function_n_kw(fun, 2, 0, args);
}

// args contains, eg: arg0  arg1  key0  value0  key1  value1
mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) {
    // TODO improve this: fun object can specify its type and we parse here the arguments,
    // passing to the function arrays of fixed and keyword arguments

    DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args);

    if (MP_OBJ_IS_SMALL_INT(fun_in)) {
        nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "'int' object is not callable"));
    } else {
        mp_obj_base_t *fun = fun_in;
        if (fun->type->call != NULL) {
            return fun->type->call(fun_in, n_args, n_kw, args);
        } else {
            nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not callable", fun->type->name));
        }
    }
}

// args contains: fun  self/NULL  arg(0)  ...  arg(n_args-2)  arg(n_args-1)  kw_key(0)  kw_val(0)  ... kw_key(n_kw-1)  kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) {
    DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args);
    int adjust = (args[1] == NULL) ? 0 : 1;
    return rt_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}

mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) {
    return mp_obj_new_tuple(n_args, items);
}

mp_obj_t rt_build_list(int n_args, mp_obj_t *items) {
    return mp_obj_new_list(n_args, items);
}

mp_obj_t rt_build_set(int n_args, mp_obj_t *items) {
    return mp_obj_new_set(n_args, items);
}

mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) {
    mp_obj_set_store(set, item);
    return set;
}

// unpacked items are stored in reverse order into the array pointed to by items
void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) {
    if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) {
        uint seq_len;
        mp_obj_t *seq_items;
        if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) {
            mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
        } else {
            mp_obj_list_get(seq_in, &seq_len, &seq_items);
        }
        if (seq_len < num) {
            nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "need more than %d values to unpack", (void*)(machine_uint_t)seq_len));
        } else if (seq_len > num) {
            nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "too many values to unpack (expected %d)", (void*)(machine_uint_t)num));
        }
        for (uint i = 0; i < num; i++) {
            items[i] = seq_items[num - 1 - i];
        }
    } else {
        // TODO call rt_getiter and extract via rt_iternext
        nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(seq_in)));
    }
}

mp_obj_t rt_build_map(int n_args) {
    return mp_obj_new_dict(n_args);
}

mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) {
    // map should always be a dict
    return mp_obj_dict_store(map, key, value);
}

mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) {
    DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
    // use load_method
    mp_obj_t dest[2];
    rt_load_method(base, attr, dest);
    if (dest[1] == NULL) {
        // load_method returned just a normal attribute
        return dest[0];
    } else {
        // load_method returned a method, so build a bound method object
        return mp_obj_new_bound_meth(dest[0], dest[1]);
    }
}

void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
    DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));

    // clear output to indicate no attribute/method found yet
    dest[0] = MP_OBJ_NULL;
    dest[1] = MP_OBJ_NULL;

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(base);

    // if this type can do its own load, then call it
    if (type->load_attr != NULL) {
        type->load_attr(base, attr, dest);
    }

    // if nothing found yet, look for built-in and generic names
    if (dest[0] == NULL) {
        if (attr == MP_QSTR___next__ && type->iternext != NULL) {
            dest[0] = (mp_obj_t)&mp_builtin_next_obj;
            dest[1] = base;
        } else if (type->load_attr == NULL) {
            // generic method lookup if type didn't provide a specific one
            // this is a lookup in the object (ie not class or type)
            const mp_method_t *meth = type->methods;
            if (meth != NULL) {
                for (; meth->name != NULL; meth++) {
                    if (strcmp(meth->name, qstr_str(attr)) == 0) {
                        // check if the methods are functions, static or class methods
                        // see http://docs.python.org/3.3/howto/descriptor.html
                        if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) {
                            // return just the function
                            dest[0] = ((mp_obj_staticmethod_t*)meth->fun)->fun;
                        } else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) {
                            // return a bound method, with self being the type of this object
                            dest[0] = ((mp_obj_classmethod_t*)meth->fun)->fun;
                            dest[1] = mp_obj_get_type(base);
                        } else {
                            // return a bound method, with self being this object
                            dest[0] = (mp_obj_t)meth->fun;
                            dest[1] = base;
                        }
                        break;
                    }
                }
            }
        }
    }

    if (dest[0] == NULL) {
        // no attribute/method called attr
        // following CPython, we give a more detailed error message for type objects
        if (MP_OBJ_IS_TYPE(base, &mp_const_type)) {
            nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr)));
        } else {
            nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
        }
    }
}

void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
    DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
    mp_obj_type_t *type = mp_obj_get_type(base);
    if (type->store_attr != NULL) {
        if (type->store_attr(base, attr, value)) {
            return;
        }
    }
    nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
}

void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) {
    DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value);
    if (MP_OBJ_IS_TYPE(base, &list_type)) {
        // list store
        mp_obj_list_store(base, index, value);
    } else if (MP_OBJ_IS_TYPE(base, &dict_type)) {
        // dict store
        mp_obj_dict_store(base, index, value);
    } else {
        mp_obj_type_t *type = mp_obj_get_type(base);
        if (type->store_item != NULL) {
            bool r = type->store_item(base, index, value);
            if (r) {
                return;
            }
            // TODO: call base classes here?
        }
        nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object does not support item assignment", mp_obj_get_type_str(base)));
    }
}

mp_obj_t rt_getiter(mp_obj_t o_in) {
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->getiter != NULL) {
        return type->getiter(o_in);
    } else {
        nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not iterable", type->name));
    }
}

mp_obj_t rt_iternext(mp_obj_t o_in) {
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not an iterator", type->name));
    }
}

mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
    // build args array
    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(name);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = fromlist;
    args[4] = level; // must be 0; we don't yet support other values

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);
}

mp_obj_t rt_import_from(mp_obj_t module, qstr name) {
    mp_obj_t x = rt_load_attr(module, name);
    /* TODO convert AttributeError to ImportError
    if (fail) {
        (ImportError, "cannot import name %s", qstr_str(name), NULL)
    }
    */
    return x;
}

mp_map_t *rt_locals_get(void) {
    return map_locals;
}

void rt_locals_set(mp_map_t *m) {
    DEBUG_OP_printf("rt_locals_set(%p)\n", m);
    map_locals = m;
}

mp_map_t *rt_globals_get(void) {
    return map_globals;
}

void rt_globals_set(mp_map_t *m) {
    DEBUG_OP_printf("rt_globals_set(%p)\n", m);
    map_globals = m;
}

mp_map_t *rt_loaded_modules_get(void) {
    return &map_loaded_modules;
}

// these must correspond to the respective enum
void *const rt_fun_table[RT_F_NUMBER_OF] = {
    rt_load_const_dec,
    rt_load_const_str,
    rt_load_name,
    rt_load_global,
    rt_load_build_class,
    rt_load_attr,
    rt_load_method,
    rt_store_name,
    rt_store_attr,
    rt_store_subscr,
    rt_is_true,
    rt_unary_op,
    rt_build_tuple,
    rt_build_list,
    rt_list_append,
    rt_build_map,
    rt_store_map,
    rt_build_set,
    rt_store_set,
    rt_make_function_from_id,
    rt_call_function_n_kw,
    rt_call_method_n_kw,
    rt_binary_op,
    rt_getiter,
    rt_iternext,
};

/*
void rt_f_vector(rt_fun_kind_t fun_kind) {
    (rt_f_table[fun_kind])();
}
*/