summaryrefslogtreecommitdiffstatshomepage
path: root/py/objfun.c
blob: b2837be5f0143eb9dd20c9ae4afbe833280400fc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>

#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "map.h"
#include "runtime0.h"
#include "runtime.h"
#include "bc.h"

/******************************************************************************/
/* native functions                                                           */

// mp_obj_fun_native_t defined in obj.h

STATIC void check_nargs(mp_obj_fun_native_t *self, int n_args, int n_kw) {
    if (n_kw && !self->is_kw) {
        nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError,
                                          "function does not take keyword arguments"));
    }

    if (self->n_args_min == self->n_args_max) {
        if (n_args != self->n_args_min) {
            nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                                                     "function takes %d positional arguments but %d were given",
                                                     self->n_args_min, n_args));
        }
    } else {
        if (n_args < self->n_args_min) {
            nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                                                    "<fun name>() missing %d required positional arguments: <list of names of params>",
                                                    self->n_args_min - n_args));
        } else if (n_args > self->n_args_max) {
            nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                                                     "<fun name> expected at most %d arguments, got %d",
                                                     self->n_args_max, n_args));
        }
    }
}

STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
    assert(MP_OBJ_IS_TYPE(self_in, &fun_native_type));
    mp_obj_fun_native_t *self = self_in;

    // check number of arguments
    check_nargs(self, n_args, n_kw);

    if (self->is_kw) {
        // function allows keywords

        // we create a map directly from the given args array
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);

        return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args);

    } else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
        // function requires a fixed number of arguments

        // dispatch function call
        switch (self->n_args_min) {
            case 0:
                return ((mp_fun_0_t)self->fun)();

            case 1:
                return ((mp_fun_1_t)self->fun)(args[0]);

            case 2:
                return ((mp_fun_2_t)self->fun)(args[0], args[1]);

            case 3:
                return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);

            default:
                assert(0);
                return mp_const_none;
        }

    } else {
        // function takes a variable number of arguments, but no keywords

        return ((mp_fun_var_t)self->fun)(n_args, args);
    }
}

const mp_obj_type_t fun_native_type = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_native_call,
};

// fun must have the correct signature for n_args fixed arguments
mp_obj_t rt_make_function_n(int n_args, void *fun) {
    mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
    o->base.type = &fun_native_type;
    o->is_kw = false;
    o->n_args_min = n_args;
    o->n_args_max = n_args;
    o->fun = fun;
    return o;
}

mp_obj_t rt_make_function_var(int n_args_min, mp_fun_var_t fun) {
    mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
    o->base.type = &fun_native_type;
    o->is_kw = false;
    o->n_args_min = n_args_min;
    o->n_args_max = ~((machine_uint_t)0);
    o->fun = fun;
    return o;
}

// min and max are inclusive
mp_obj_t rt_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) {
    mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
    o->base.type = &fun_native_type;
    o->is_kw = false;
    o->n_args_min = n_args_min;
    o->n_args_max = n_args_max;
    o->fun = fun;
    return o;
}

/******************************************************************************/
/* byte code functions                                                        */

typedef struct _mp_obj_fun_bc_t {
    mp_obj_base_t base;
    mp_map_t *globals;      // the context within which this function was defined
    struct {
        machine_uint_t n_args : 15;         // number of arguments this function takes
        machine_uint_t n_def_args : 15;     // number of default arguments
        machine_uint_t takes_var_args : 1;  // set if this function takes variable args
        machine_uint_t takes_kw_args : 1;   // set if this function takes keyword args
    };
    uint n_state;           // total state size for the executing function (incl args, locals, stack)
    const byte *bytecode;   // bytecode for the function
    mp_obj_t extra_args[];  // values of default args (if any), plus a slot at the end for var args and/or kw args (if it takes them)
} mp_obj_fun_bc_t;

STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
    mp_obj_fun_bc_t *self = self_in;

    const mp_obj_t *kwargs = args + n_args;
    mp_obj_t *extra_args = self->extra_args + self->n_def_args;
    uint n_extra_args = 0;

    // check positional arguments

    if (n_args > self->n_args) {
        // given more than enough arguments
        if (!self->takes_var_args) {
            goto arg_error;
        }
        // put extra arguments in varargs tuple
        *extra_args = mp_obj_new_tuple(n_args - self->n_args, args + self->n_args);
        n_extra_args = 1;
        n_args = self->n_args;
    } else if (n_args >= self->n_args - self->n_def_args) {
        // given enough arguments, but may need to use some default arguments
        if (self->takes_var_args) {
            *extra_args = mp_const_empty_tuple;
            n_extra_args = 1;
        }
        extra_args -= self->n_args - n_args;
        n_extra_args += self->n_args - n_args;
    } else {
        goto arg_error;
    }

    // check keyword arguments

    if (n_kw != 0) {
        // keyword arguments given
        if (!self->takes_kw_args) {
            nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
        }
        mp_obj_t dict = mp_obj_new_dict(n_kw);
        for (uint i = 0; i < n_kw; i++) {
            mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
        }
        extra_args[n_extra_args] = dict;
        n_extra_args += 1;
    } else {
        // no keyword arguments given
        if (self->takes_kw_args) {
            extra_args[n_extra_args] = mp_obj_new_dict(0);
            n_extra_args += 1;
        }
    }

    mp_map_t *old_globals = rt_globals_get();
    rt_globals_set(self->globals);
    mp_obj_t result;
    mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code(self->bytecode, args, n_args, extra_args, n_extra_args, self->n_state, &result);
    rt_globals_set(old_globals);

    if (vm_return_kind == MP_VM_RETURN_NORMAL) {
        return result;
    } else { // MP_VM_RETURN_EXCEPTION
        nlr_jump(result);
    }

arg_error:
    nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
}

const mp_obj_type_t fun_bc_type = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_bc_call,
};

mp_obj_t mp_obj_new_fun_bc(uint scope_flags, uint n_args, mp_obj_t def_args_in, uint n_state, const byte *code) {
    uint n_def_args = 0;
    uint n_extra_args = 0;
    mp_obj_tuple_t *def_args = def_args_in;
    if (def_args != MP_OBJ_NULL) {
        n_def_args = def_args->len;
        n_extra_args = def_args->len;
    }
    if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
        n_extra_args += 1;
    }
    if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
        n_extra_args += 1;
    }
    mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
    o->base.type = &fun_bc_type;
    o->globals = rt_globals_get();
    o->n_args = n_args;
    o->n_def_args = n_def_args;
    o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0;
    o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0;
    o->n_state = n_state;
    o->bytecode = code;
    if (def_args != MP_OBJ_NULL) {
        memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
    }
    return o;
}

void mp_obj_fun_bc_get(mp_obj_t self_in, int *n_args, uint *n_state, const byte **code) {
    assert(MP_OBJ_IS_TYPE(self_in, &fun_bc_type));
    mp_obj_fun_bc_t *self = self_in;
    *n_args = self->n_args;
    *n_state = self->n_state;
    *code = self->bytecode;
}

/******************************************************************************/
/* inline assembler functions                                                 */

typedef struct _mp_obj_fun_asm_t {
    mp_obj_base_t base;
    int n_args;
    void *fun;
} mp_obj_fun_asm_t;

typedef machine_uint_t (*inline_asm_fun_0_t)();
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);

// convert a Micro Python object to a sensible value for inline asm
STATIC machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
    // TODO for byte_array, pass pointer to the array
    if (MP_OBJ_IS_SMALL_INT(obj)) {
        return MP_OBJ_SMALL_INT_VALUE(obj);
    } else if (obj == mp_const_none) {
        return 0;
    } else if (obj == mp_const_false) {
        return 0;
    } else if (obj == mp_const_true) {
        return 1;
    } else if (MP_OBJ_IS_STR(obj)) {
        // pointer to the string (it's probably constant though!)
        uint l;
        return (machine_uint_t)mp_obj_str_get_data(obj, &l);
#if MICROPY_ENABLE_FLOAT
    } else if (MP_OBJ_IS_TYPE(obj, &float_type)) {
        // convert float to int (could also pass in float registers)
        return (machine_int_t)mp_obj_float_get(obj);
#endif
    } else if (MP_OBJ_IS_TYPE(obj, &tuple_type)) {
        // pointer to start of tuple (could pass length, but then could use len(x) for that)
        uint len;
        mp_obj_t *items;
        mp_obj_tuple_get(obj, &len, &items);
        return (machine_uint_t)items;
    } else if (MP_OBJ_IS_TYPE(obj, &list_type)) {
        // pointer to start of list (could pass length, but then could use len(x) for that)
        uint len;
        mp_obj_t *items;
        mp_obj_list_get(obj, &len, &items);
        return (machine_uint_t)items;
    } else {
        // just pass along a pointer to the object
        return (machine_uint_t)obj;
    }
}

// convert a return value from inline asm to a sensible Micro Python object
STATIC mp_obj_t convert_val_from_inline_asm(machine_uint_t val) {
    return MP_OBJ_NEW_SMALL_INT(val);
}

STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
    mp_obj_fun_asm_t *self = self_in;

    if (n_args != self->n_args) {
        nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
    }
    if (n_kw != 0) {
        nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
    }

    machine_uint_t ret;
    if (n_args == 0) {
        ret = ((inline_asm_fun_0_t)self->fun)();
    } else if (n_args == 1) {
        ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
    } else if (n_args == 2) {
        ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
    } else if (n_args == 3) {
        ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
    } else {
        assert(0);
        ret = 0;
    }

    return convert_val_from_inline_asm(ret);
}

STATIC const mp_obj_type_t fun_asm_type = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = fun_asm_call,
};

mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
    mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
    o->base.type = &fun_asm_type;
    o->n_args = n_args;
    o->fun = fun;
    return o;
}