1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
|
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2014 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "objfun.h"
#include "runtime0.h"
#include "runtime.h"
#include "bc.h"
#include "stackctrl.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
/******************************************************************************/
/* native functions */
// mp_obj_fun_native_t defined in obj.h
STATIC mp_obj_t fun_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
switch (op) {
case MP_BINARY_OP_EQUAL:
// These objects can be equal only if it's the same underlying structure,
// we don't even need to check for 2nd arg type.
return MP_BOOL(lhs_in == rhs_in);
}
return MP_OBJ_NULL; // op not supported
}
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_native));
mp_obj_fun_native_t *self = self_in;
// check number of arguments
mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
if (self->is_kw) {
// function allows keywords
// we create a map directly from the given args array
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args);
} else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
// function requires a fixed number of arguments
// dispatch function call
switch (self->n_args_min) {
case 0:
return ((mp_fun_0_t)self->fun)();
case 1:
return ((mp_fun_1_t)self->fun)(args[0]);
case 2:
return ((mp_fun_2_t)self->fun)(args[0], args[1]);
case 3:
return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);
default:
assert(0);
return mp_const_none;
}
} else {
// function takes a variable number of arguments, but no keywords
return ((mp_fun_var_t)self->fun)(n_args, args);
}
}
const mp_obj_type_t mp_type_fun_native = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_native_call,
.binary_op = fun_binary_op,
};
// fun must have the correct signature for n_args fixed arguments
mp_obj_t mp_make_function_n(int n_args, void *fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->is_kw = false;
o->n_args_min = n_args;
o->n_args_max = n_args;
o->fun = fun;
return o;
}
mp_obj_t mp_make_function_var(int n_args_min, mp_fun_var_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->is_kw = false;
o->n_args_min = n_args_min;
o->n_args_max = MP_OBJ_FUN_ARGS_MAX;
o->fun = fun;
return o;
}
// min and max are inclusive
mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->is_kw = false;
o->n_args_min = n_args_min;
o->n_args_max = n_args_max;
o->fun = fun;
return o;
}
/******************************************************************************/
/* byte code functions */
const char *mp_obj_code_get_name(const byte *code_info) {
qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24);
return qstr_str(block_name);
}
const char *mp_obj_fun_get_name(mp_const_obj_t fun_in) {
const mp_obj_fun_bc_t *fun = fun_in;
const byte *code_info = fun->bytecode;
return mp_obj_code_get_name(code_info);
}
#if MICROPY_CPYTHON_COMPAT
STATIC void fun_bc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) {
mp_obj_fun_bc_t *o = o_in;
print(env, "<function %s at 0x%x>", mp_obj_fun_get_name(o), o);
}
#endif
#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, int sz) {
DEBUG_printf("%p: ", a);
for (int i = 0; i < sz; i++) {
DEBUG_printf("%p ", a[i]);
}
DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif
STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, uint expected, uint given) {
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
// Generic message, to be reused for other argument issues
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"argument num/types mismatch"));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function takes %d positional arguments but %d were given", expected, given));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"%s() takes %d positional arguments but %d were given",
mp_obj_fun_get_name(f), expected, given));
#endif
}
// With this macro you can tune the maximum number of function state bytes
// that will be allocated on the stack. Any function that needs more
// than this will use the heap.
#define VM_MAX_STATE_ON_STACK (10 * sizeof(mp_uint_t))
// Set this to enable a simple stack overflow check.
#define VM_DETECT_STACK_OVERFLOW (0)
// code_state should have ->ip filled in (pointing past code info block),
// as well as ->n_state.
void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// This function is pretty complicated. It's main aim is to be efficient in speed and RAM
// usage for the common case of positional only args.
mp_obj_fun_bc_t *self = self_in;
mp_uint_t n_state = code_state->n_state;
const byte *ip = code_state->ip;
code_state->code_info = self->bytecode;
code_state->sp = &code_state->state[0] - 1;
code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1;
// zero out the local stack to begin with
memset(code_state->state, 0, n_state * sizeof(*code_state->state));
const mp_obj_t *kwargs = args + n_args;
// var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed)
mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - self->n_pos_args - self->n_kwonly_args];
// check positional arguments
if (n_args > self->n_pos_args) {
// given more than enough arguments
if (!self->takes_var_args) {
fun_pos_args_mismatch(self, self->n_pos_args, n_args);
}
// put extra arguments in varargs tuple
*var_pos_kw_args-- = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args);
n_args = self->n_pos_args;
} else {
if (self->takes_var_args) {
DEBUG_printf("passing empty tuple as *args\n");
*var_pos_kw_args-- = mp_const_empty_tuple;
}
// Apply processing and check below only if we don't have kwargs,
// otherwise, kw handling code below has own extensive checks.
if (n_kw == 0 && !self->has_def_kw_args) {
if (n_args >= self->n_pos_args - self->n_def_args) {
// given enough arguments, but may need to use some default arguments
for (uint i = n_args; i < self->n_pos_args; i++) {
code_state->state[n_state - 1 - i] = self->extra_args[i - (self->n_pos_args - self->n_def_args)];
}
} else {
fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args);
}
}
}
// copy positional args into state
for (uint i = 0; i < n_args; i++) {
code_state->state[n_state - 1 - i] = args[i];
}
// check keyword arguments
if (n_kw != 0 || self->has_def_kw_args) {
DEBUG_printf("Initial args: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
mp_obj_t dict = MP_OBJ_NULL;
if (self->takes_kw_args) {
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
*var_pos_kw_args = dict;
}
for (uint i = 0; i < n_kw; i++) {
qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]);
for (uint j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) {
if (arg_name == self->args[j]) {
if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function got multiple values for argument '%s'", qstr_str(arg_name)));
}
code_state->state[n_state - 1 - j] = kwargs[2 * i + 1];
goto continue2;
}
}
// Didn't find name match with positional args
if (!self->takes_kw_args) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
}
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
continue2:;
}
DEBUG_printf("Args with kws flattened: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// fill in defaults for positional args
mp_obj_t *d = &code_state->state[n_state - self->n_pos_args];
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
for (int i = self->n_def_args; i > 0; i--, d++, s--) {
if (*d == MP_OBJ_NULL) {
*d = *s;
}
}
DEBUG_printf("Args after filling default positional: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// Check that all mandatory positional args are specified
while (d < &code_state->state[n_state]) {
if (*d++ == MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required positional argument #%d", &code_state->state[n_state] - d));
}
}
// Check that all mandatory keyword args are specified
// Fill in default kw args if we have them
for (uint i = 0; i < self->n_kwonly_args; i++) {
if (code_state->state[n_state - 1 - self->n_pos_args - i] == MP_OBJ_NULL) {
mp_map_elem_t *elem = NULL;
if (self->has_def_kw_args) {
elem = mp_map_lookup(&((mp_obj_dict_t*)self->extra_args[self->n_def_args])->map, MP_OBJ_NEW_QSTR(self->args[self->n_pos_args + i]), MP_MAP_LOOKUP);
}
if (elem != NULL) {
code_state->state[n_state - 1 - self->n_pos_args - i] = elem->value;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required keyword argument '%s'", qstr_str(self->args[self->n_pos_args + i])));
}
}
}
} else {
// no keyword arguments given
if (self->n_kwonly_args != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"function missing keyword-only argument"));
}
if (self->takes_kw_args) {
*var_pos_kw_args = mp_obj_new_dict(0);
}
}
// bytecode prelude: initialise closed over variables
for (uint n_local = *ip++; n_local > 0; n_local--) {
uint local_num = *ip++;
code_state->state[n_state - 1 - local_num] = mp_obj_new_cell(code_state->state[n_state - 1 - local_num]);
}
// now that we skipped over the prelude, set the ip for the VM
code_state->ip = ip;
DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", self->n_pos_args, self->n_kwonly_args);
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
dump_args(code_state->state, n_state);
}
STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
MP_STACK_CHECK();
DEBUG_printf("Input n_args: %d, n_kw: %d\n", n_args, n_kw);
DEBUG_printf("Input pos args: ");
dump_args(args, n_args);
DEBUG_printf("Input kw args: ");
dump_args(args + n_args, n_kw * 2);
mp_obj_fun_bc_t *self = self_in;
DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
const byte *ip = self->bytecode;
// get code info size, and skip line number table
mp_uint_t code_info_size = ip[0] | (ip[1] << 8) | (ip[2] << 16) | (ip[3] << 24);
ip += code_info_size;
// bytecode prelude: state size and exception stack size; 16 bit uints
mp_uint_t n_state = ip[0] | (ip[1] << 8);
mp_uint_t n_exc_stack = ip[2] | (ip[3] << 8);
ip += 4;
#if VM_DETECT_STACK_OVERFLOW
n_state += 1;
#endif
// allocate state for locals and stack
uint state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
mp_code_state *code_state;
if (state_size > VM_MAX_STATE_ON_STACK) {
code_state = m_new_obj_var(mp_code_state, byte, state_size);
} else {
code_state = alloca(sizeof(mp_code_state) + state_size);
}
code_state->n_state = n_state;
code_state->ip = ip;
mp_setup_code_state(code_state, self_in, n_args, n_kw, args);
// execute the byte code with the correct globals context
mp_obj_dict_t *old_globals = mp_globals_get();
mp_globals_set(self->globals);
mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
mp_globals_set(old_globals);
#if VM_DETECT_STACK_OVERFLOW
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
if (code_state->sp < code_state->state) {
printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
assert(0);
}
}
// We can't check the case when an exception is returned in state[n_state - 1]
// and there are no arguments, because in this case our detection slot may have
// been overwritten by the returned exception (which is allowed).
if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
// Just check to see that we have at least 1 null object left in the state.
bool overflow = true;
for (uint i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
if (code_state->state[i] == MP_OBJ_NULL) {
overflow = false;
break;
}
}
if (overflow) {
printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
assert(0);
}
}
#endif
mp_obj_t result;
switch (vm_return_kind) {
case MP_VM_RETURN_NORMAL:
// return value is in *sp
result = *code_state->sp;
break;
case MP_VM_RETURN_EXCEPTION:
// return value is in state[n_state - 1]
result = code_state->state[n_state - 1];
break;
case MP_VM_RETURN_YIELD: // byte-code shouldn't yield
default:
assert(0);
result = mp_const_none;
vm_return_kind = MP_VM_RETURN_NORMAL;
break;
}
// free the state if it was allocated on the heap
if (state_size > VM_MAX_STATE_ON_STACK) {
m_del_var(mp_code_state, byte, state_size, code_state);
}
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
return result;
} else { // MP_VM_RETURN_EXCEPTION
nlr_raise(result);
}
}
const mp_obj_type_t mp_type_fun_bc = {
{ &mp_type_type },
.name = MP_QSTR_function,
#if MICROPY_CPYTHON_COMPAT
.print = fun_bc_print,
#endif
.call = fun_bc_call,
.binary_op = fun_binary_op,
};
mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_pos_args, uint n_kwonly_args, mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code) {
uint n_def_args = 0;
uint n_extra_args = 0;
mp_obj_tuple_t *def_args = def_args_in;
if (def_args != MP_OBJ_NULL) {
assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple));
n_def_args = def_args->len;
n_extra_args = def_args->len;
}
if (def_kw_args != MP_OBJ_NULL) {
n_extra_args += 1;
}
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
o->base.type = &mp_type_fun_bc;
o->globals = mp_globals_get();
o->args = args;
o->n_pos_args = n_pos_args;
o->n_kwonly_args = n_kwonly_args;
o->n_def_args = n_def_args;
o->has_def_kw_args = def_kw_args != MP_OBJ_NULL;
o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0;
o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0;
o->bytecode = code;
if (def_args != MP_OBJ_NULL) {
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
}
if (def_kw_args != MP_OBJ_NULL) {
o->extra_args[n_def_args] = def_kw_args;
}
return o;
}
/******************************************************************************/
/* viper functions */
#if MICROPY_EMIT_NATIVE
typedef struct _mp_obj_fun_viper_t {
mp_obj_base_t base;
int n_args;
void *fun;
mp_uint_t type_sig;
} mp_obj_fun_viper_t;
typedef mp_uint_t (*viper_fun_0_t)();
typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_fun_viper_t *self = self_in;
mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
mp_uint_t ret;
if (n_args == 0) {
ret = ((viper_fun_0_t)self->fun)();
} else if (n_args == 1) {
ret = ((viper_fun_1_t)self->fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2));
} else if (n_args == 2) {
ret = ((viper_fun_2_t)self->fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2), mp_convert_obj_to_native(args[1], self->type_sig >> 4));
} else if (n_args == 3) {
ret = ((viper_fun_3_t)self->fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2), mp_convert_obj_to_native(args[1], self->type_sig >> 4), mp_convert_obj_to_native(args[2], self->type_sig >> 6));
} else {
assert(0);
ret = 0;
}
return mp_convert_native_to_obj(ret, self->type_sig);
}
STATIC const mp_obj_type_t mp_type_fun_viper = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_viper_call,
.binary_op = fun_binary_op,
};
mp_obj_t mp_obj_new_fun_viper(uint n_args, void *fun, mp_uint_t type_sig) {
mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
o->base.type = &mp_type_fun_viper;
o->n_args = n_args;
o->fun = fun;
o->type_sig = type_sig;
return o;
}
#endif // MICROPY_EMIT_NATIVE
/******************************************************************************/
/* inline assembler functions */
#if MICROPY_EMIT_INLINE_THUMB
typedef struct _mp_obj_fun_asm_t {
mp_obj_base_t base;
int n_args;
void *fun;
} mp_obj_fun_asm_t;
typedef mp_uint_t (*inline_asm_fun_0_t)();
typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
// convert a Micro Python object to a sensible value for inline asm
STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
// TODO for byte_array, pass pointer to the array
if (MP_OBJ_IS_SMALL_INT(obj)) {
return MP_OBJ_SMALL_INT_VALUE(obj);
} else if (obj == mp_const_none) {
return 0;
} else if (obj == mp_const_false) {
return 0;
} else if (obj == mp_const_true) {
return 1;
} else if (MP_OBJ_IS_STR(obj)) {
// pointer to the string (it's probably constant though!)
uint l;
return (mp_uint_t)mp_obj_str_get_data(obj, &l);
} else {
mp_obj_type_t *type = mp_obj_get_type(obj);
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (type == &mp_type_float) {
// convert float to int (could also pass in float registers)
return (mp_int_t)mp_obj_float_get(obj);
#endif
} else if (type == &mp_type_tuple) {
// pointer to start of tuple (could pass length, but then could use len(x) for that)
uint len;
mp_obj_t *items;
mp_obj_tuple_get(obj, &len, &items);
return (mp_uint_t)items;
} else if (type == &mp_type_list) {
// pointer to start of list (could pass length, but then could use len(x) for that)
uint len;
mp_obj_t *items;
mp_obj_list_get(obj, &len, &items);
return (mp_uint_t)items;
} else {
mp_buffer_info_t bufinfo;
if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
// supports the buffer protocol, return a pointer to the data
return (mp_uint_t)bufinfo.buf;
} else {
// just pass along a pointer to the object
return (mp_uint_t)obj;
}
}
}
}
// convert a return value from inline asm to a sensible Micro Python object
STATIC mp_obj_t convert_val_from_inline_asm(mp_uint_t val) {
return MP_OBJ_NEW_SMALL_INT(val);
}
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_fun_asm_t *self = self_in;
mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
mp_uint_t ret;
if (n_args == 0) {
ret = ((inline_asm_fun_0_t)self->fun)();
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
} else {
assert(0);
ret = 0;
}
return convert_val_from_inline_asm(ret);
}
STATIC const mp_obj_type_t mp_type_fun_asm = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_asm_call,
.binary_op = fun_binary_op,
};
mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
o->base.type = &mp_type_fun_asm;
o->n_args = n_args;
o->fun = fun;
return o;
}
#endif // MICROPY_EMIT_INLINE_THUMB
|