summaryrefslogtreecommitdiffstatshomepage
path: root/extmod/fsusermount.c
blob: 4ca9b80a603d04021dc8bcb62bedbcb82d3cf514 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/mpconfig.h"
#if MICROPY_FSUSERMOUNT
#include <string.h>
#include <errno.h>

#include "py/nlr.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#if MICROPY_FATFS_OO
#include "lib/oofatfs/ff.h"
#else
#include "lib/fatfs/ff.h"
#endif
#include "extmod/fsusermount.h"

fs_user_mount_t *fatfs_mount_mkfs(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool mkfs) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_readonly, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        { MP_QSTR_mkfs, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
    };

    // parse args
    mp_obj_t device = pos_args[0];
    mp_obj_t mount_point = pos_args[1];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the mount point
    mp_uint_t mnt_len;
    const char *mnt_str = mp_obj_str_get_data(mount_point, &mnt_len);

    if (device == mp_const_none) {
        // umount
        FRESULT res = FR_NO_FILESYSTEM;
        for (size_t i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
            fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
            if (vfs != NULL && !memcmp(mnt_str, vfs->str, mnt_len + 1)) {
                #if MICROPY_FATFS_OO
                res = f_umount(&vfs->fatfs);
                #else
                res = f_mount(NULL, vfs->str, 0);
                #endif
                if (vfs->flags & FSUSER_FREE_OBJ) {
                    m_del_obj(fs_user_mount_t, vfs);
                }
                MP_STATE_PORT(fs_user_mount)[i] = NULL;
                break;
            }
        }
        if (res != FR_OK) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't umount"));
        }
        return NULL;
    } else {
        // mount
        size_t i = 0;
        for (; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
            if (MP_STATE_PORT(fs_user_mount)[i] == NULL) {
                break;
            }
        }
        if (i == MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "too many devices mounted"));
        }

        // create new object
        fs_user_mount_t *vfs = m_new_obj(fs_user_mount_t);
        vfs->str = mnt_str;
        vfs->len = mnt_len;
        vfs->flags = FSUSER_FREE_OBJ;
        #if MICROPY_FATFS_OO
        vfs->fatfs.drv = vfs;
        #endif

        // load block protocol methods
        mp_load_method(device, MP_QSTR_readblocks, vfs->readblocks);
        mp_load_method_maybe(device, MP_QSTR_writeblocks, vfs->writeblocks);
        mp_load_method_maybe(device, MP_QSTR_ioctl, vfs->u.ioctl);
        if (vfs->u.ioctl[0] != MP_OBJ_NULL) {
            // device supports new block protocol, so indicate it
            vfs->flags |= FSUSER_HAVE_IOCTL;
        } else {
            // no ioctl method, so assume the device uses the old block protocol
            mp_load_method_maybe(device, MP_QSTR_sync, vfs->u.old.sync);
            mp_load_method(device, MP_QSTR_count, vfs->u.old.count);
        }

        // Read-only device indicated by writeblocks[0] == MP_OBJ_NULL.
        // User can specify read-only device by:
        //  1. readonly=True keyword argument
        //  2. nonexistent writeblocks method (then writeblocks[0] == MP_OBJ_NULL already)
        if (args[0].u_bool) {
            vfs->writeblocks[0] = MP_OBJ_NULL;
        }

        // Register the vfs object so that it can be found by the FatFS driver using
        // ff_get_ldnumber.  We don't register it any earlier than this point in case there
        // is an exception, in which case there would remain a partially mounted device.
        MP_STATE_PORT(fs_user_mount)[i] = vfs;

        // mount the block device (if mkfs, only pre-mount)
        FRESULT res;
        #if MICROPY_FATFS_OO
        if (mkfs) {
            res = FR_OK;
        } else {
            res = f_mount(&vfs->fatfs);
        }
        #else
        res = f_mount(&vfs->fatfs, vfs->str, !mkfs);
        #endif

        // check the result
        if (res == FR_OK) {
            if (mkfs) {
                goto mkfs;
            }
        } else if (res == FR_NO_FILESYSTEM && args[1].u_bool) {
mkfs:;
            #if MICROPY_FATFS_OO
            uint8_t working_buf[_MAX_SS];
            res = f_mkfs(&vfs->fatfs, FM_FAT | FM_SFD, 0, working_buf, sizeof(working_buf));
            #else
            res = f_mkfs(vfs->str, 1, 0);
            #endif
            if (res != FR_OK) {
mkfs_error:
                MP_STATE_PORT(fs_user_mount)[i] = NULL;
                nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't mkfs"));
            }
            if (mkfs) {
                // If requested to only mkfs, unmount pre-mounted device
                #if MICROPY_FATFS_OO
                res = FR_OK;
                #else
                res = f_mount(NULL, vfs->str, 0);
                #endif
                if (res != FR_OK) {
                    goto mkfs_error;
                }
                MP_STATE_PORT(fs_user_mount)[i] = NULL;
                return NULL;
            }
        } else {
            MP_STATE_PORT(fs_user_mount)[i] = NULL;
            nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't mount"));
        }

        /*
        if (vfs->writeblocks[0] == MP_OBJ_NULL) {
            printf("mounted read-only");
        } else {
            printf("mounted read-write");
        }
        DWORD nclst;
        FATFS *fatfs;
        f_getfree(vfs->str, &nclst, &fatfs);
        printf(" on %s with %u bytes free\n", vfs->str, (uint)(nclst * fatfs->csize * 512));
        */
        return vfs;
    }
}

STATIC mp_obj_t fatfs_mount(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    fatfs_mount_mkfs(n_args, pos_args, kw_args, false);
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(fsuser_mount_obj, 2, fatfs_mount);

mp_obj_t fatfs_umount(mp_obj_t bdev_or_path_in) {
    size_t i = 0;
    if (MP_OBJ_IS_STR(bdev_or_path_in)) {
        mp_uint_t mnt_len;
        const char *mnt_str = mp_obj_str_get_data(bdev_or_path_in, &mnt_len);
        for (; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
            fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
            if (vfs != NULL && !memcmp(mnt_str, vfs->str, mnt_len + 1)) {
                break;
            }
        }
    } else {
        for (; i < MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount)); ++i) {
            fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
            if (vfs != NULL && bdev_or_path_in == vfs->readblocks[1]) {
                break;
            }
        }
    }

    if (i == MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
        mp_raise_OSError(MP_EINVAL);
    }

    fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[i];
    FRESULT res;
    #if MICROPY_FATFS_OO
    res = f_umount(&vfs->fatfs);
    #else
    res = f_mount(NULL, vfs->str, 0);
    #endif
    if (vfs->flags & FSUSER_FREE_OBJ) {
        m_del_obj(fs_user_mount_t, vfs);
    }
    MP_STATE_PORT(fs_user_mount)[i] = NULL;
    if (res != FR_OK) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "can't umount"));
    }
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(fsuser_umount_obj, fatfs_umount);

STATIC mp_obj_t fatfs_mkfs(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    fatfs_mount_mkfs(n_args, pos_args, kw_args, true);
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(fsuser_mkfs_obj, 2, fatfs_mkfs);

#endif // MICROPY_FSUSERMOUNT