1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
/*****************************************************************************
*
* spi.c - CC3000 Host Driver Implementation.
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <string.h>
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "pin.h"
#include "led.h"
#include "extint.h"
#include "spi.h"
#include "ccspi.h"
#include "evnt_handler.h"
#if 0 // print debugging info
#include <stdio.h>
#define DEBUG_printf(args...) printf(args)
#else // don't print debugging info
#define DEBUG_printf(args...) (void)0
#endif
// these need to be set to valid values before anything in this file will work
STATIC SPI_HandleTypeDef *SPI_HANDLE = NULL;
STATIC const pin_obj_t *PIN_CS = NULL;
STATIC const pin_obj_t *PIN_EN = NULL;
STATIC const pin_obj_t *PIN_IRQ = NULL;
#define CS_LOW() HAL_GPIO_WritePin(PIN_CS->gpio, PIN_CS->pin_mask, GPIO_PIN_RESET)
#define CS_HIGH() HAL_GPIO_WritePin(PIN_CS->gpio, PIN_CS->pin_mask, GPIO_PIN_SET)
#define READ 3
#define WRITE 1
#define HI(value) (((value) & 0xFF00) >> 8)
#define LO(value) ((value) & 0x00FF)
#define SPI_TIMEOUT (1000)
#define HEADERS_SIZE_EVNT (SPI_HEADER_SIZE + 5)
/* SPI bus states */
#define eSPI_STATE_POWERUP (0)
#define eSPI_STATE_INITIALIZED (1)
#define eSPI_STATE_IDLE (2)
#define eSPI_STATE_WRITE_IRQ (3)
#define eSPI_STATE_WRITE_FIRST_PORTION (4)
#define eSPI_STATE_WRITE_EOT (5)
#define eSPI_STATE_READ_IRQ (6)
#define eSPI_STATE_READ_FIRST_PORTION (7)
#define eSPI_STATE_READ_EOT (8)
// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. The location of the memory where the magic number
// resides shall never be written. In case it is written - the overrun occured and either recevie function
// or send function will stuck forever.
#define CC3000_BUFFER_MAGIC_NUMBER (0xDE)
typedef struct {
gcSpiHandleRx SPIRxHandler;
unsigned short usTxPacketLength;
unsigned short usRxPacketLength;
unsigned long ulSpiState;
unsigned char *pTxPacket;
unsigned char *pRxPacket;
} tSpiInformation;
tSpiInformation sSpiInformation;
char spi_buffer[CC3000_RX_BUFFER_SIZE];
unsigned char wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];
STATIC const mp_obj_fun_builtin_t irq_callback_obj;
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size);
void SpiReadDataSynchronous(unsigned char *data, unsigned short size);
// set the pins to use to communicate with the CC3000
// the arguments must be of type pin_obj_t* and SPI_HandleTypeDef*
void SpiInit(void *spi, const void *pin_cs, const void *pin_en, const void *pin_irq) {
SPI_HANDLE = spi;
PIN_CS = pin_cs;
PIN_EN = pin_en;
PIN_IRQ = pin_irq;
}
void SpiClose(void)
{
if (sSpiInformation.pRxPacket) {
sSpiInformation.pRxPacket = 0;
}
tSLInformation.WlanInterruptDisable();
//HAL_SPI_DeInit(SPI_HANDLE);
}
void SpiOpen(gcSpiHandleRx pfRxHandler)
{
DEBUG_printf("SpiOpen\n");
/* initialize SPI state */
sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;
sSpiInformation.SPIRxHandler = pfRxHandler;
sSpiInformation.usTxPacketLength = 0;
sSpiInformation.pTxPacket = NULL;
sSpiInformation.pRxPacket = (unsigned char *)spi_buffer;
sSpiInformation.usRxPacketLength = 0;
spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
/* SPI configuration */
SPI_HANDLE->Init.Mode = SPI_MODE_MASTER;
SPI_HANDLE->Init.Direction = SPI_DIRECTION_2LINES;
SPI_HANDLE->Init.DataSize = SPI_DATASIZE_8BIT;
SPI_HANDLE->Init.CLKPolarity = SPI_POLARITY_LOW;
SPI_HANDLE->Init.CLKPhase = SPI_PHASE_2EDGE;
SPI_HANDLE->Init.NSS = SPI_NSS_SOFT;
SPI_HANDLE->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
SPI_HANDLE->Init.FirstBit = SPI_FIRSTBIT_MSB;
SPI_HANDLE->Init.TIMode = SPI_TIMODE_DISABLED;
SPI_HANDLE->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
SPI_HANDLE->Init.CRCPolynomial = 7;
spi_init(SPI_HANDLE, false);
// configure wlan CS and EN pins
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Alternate = 0;
GPIO_InitStructure.Pin = PIN_CS->pin_mask;
HAL_GPIO_Init(PIN_CS->gpio, &GPIO_InitStructure);
GPIO_InitStructure.Pin = PIN_EN->pin_mask;
HAL_GPIO_Init(PIN_EN->gpio, &GPIO_InitStructure);
HAL_GPIO_WritePin(PIN_CS->gpio, PIN_CS->pin_mask, GPIO_PIN_SET);
HAL_GPIO_WritePin(PIN_EN->gpio, PIN_EN->pin_mask, GPIO_PIN_RESET);
/* do a dummy read, this ensures SCLK is low before
actual communications start, it might be required */
CS_LOW();
uint8_t buf[1];
HAL_SPI_Receive(SPI_HANDLE, buf, sizeof(buf), SPI_TIMEOUT);
CS_HIGH();
// register EXTI
extint_register((mp_obj_t)PIN_IRQ, GPIO_MODE_IT_FALLING, GPIO_PULLUP, (mp_obj_t)&irq_callback_obj, true, NULL);
extint_enable(PIN_IRQ->pin);
DEBUG_printf("SpiOpen finished; IRQ.pin=%d IRQ_LINE=%d\n", PIN_IRQ->pin, PIN_IRQ->pin);
}
void SpiPauseSpi(void)
{
extint_disable(PIN_IRQ->pin);
}
void SpiResumeSpi(void)
{
extint_enable(PIN_IRQ->pin);
}
long ReadWlanInterruptPin(void)
{
return HAL_GPIO_ReadPin(PIN_IRQ->gpio, PIN_IRQ->pin_mask);
}
void WriteWlanPin(unsigned char val)
{
HAL_GPIO_WritePin(PIN_EN->gpio, PIN_EN->pin_mask,
(WLAN_ENABLE)? GPIO_PIN_SET:GPIO_PIN_RESET);
}
void __delay_cycles(volatile int x)
{
x *= 6; // for 168 MHz CPU
while (x--);
}
long SpiFirstWrite(unsigned char *ucBuf, unsigned short usLength)
{
DEBUG_printf("SpiFirstWrite %lu\n", sSpiInformation.ulSpiState);
CS_LOW();
// Assuming we are running on 24 MHz ~50 micro delay is 1200 cycles;
__delay_cycles(1200);
// SPI writes first 4 bytes of data
SpiWriteDataSynchronous(ucBuf, 4);
__delay_cycles(1200);
SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);
// From this point on - operate in a regular way
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CS_HIGH();
return(0);
}
long SpiWrite(unsigned char *pUserBuffer, unsigned short usLength)
{
DEBUG_printf("SpiWrite %lu\n", sSpiInformation.ulSpiState);
unsigned char ucPad = 0;
// Figure out the total length of the packet in order to figure out if there
// is padding or not
if(!(usLength & 0x0001)) {
ucPad++;
}
pUserBuffer[0] = WRITE;
pUserBuffer[1] = HI(usLength + ucPad);
pUserBuffer[2] = LO(usLength + ucPad);
pUserBuffer[3] = 0;
pUserBuffer[4] = 0;
usLength += (SPI_HEADER_SIZE + ucPad);
// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. If the magic number is overriten - buffer overrun
// occurred - and we will stuck here forever!
if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER) {
while (1);
}
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP) {
while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED);
}
if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED) {
// This is time for first TX/RX transactions over SPI:
// the IRQ is down - so need to send read buffer size command
SpiFirstWrite(pUserBuffer, usLength);
} else {
//
// We need to prevent here race that can occur in case 2 back to back packets are sent to the
// device, so the state will move to IDLE and once again to not IDLE due to IRQ
//
tSLInformation.WlanInterruptDisable();
while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE);
sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
sSpiInformation.pTxPacket = pUserBuffer;
sSpiInformation.usTxPacketLength = usLength;
// Assert the CS line and wait till SSI IRQ line is active and then initialize write operation
CS_LOW();
// Re-enable IRQ - if it was not disabled - this is not a problem...
tSLInformation.WlanInterruptEnable();
// check for a missing interrupt between the CS assertion and enabling back the interrupts
if (tSLInformation.ReadWlanInterruptPin() == 0) {
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CS_HIGH();
}
}
// Due to the fact that we are currently implementing a blocking situation
// here we will wait till end of transaction
while (eSPI_STATE_IDLE != sSpiInformation.ulSpiState);
return(0);
}
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size)
{
DEBUG_printf("SpiWriteDataSynchronous(data=%p [%x %x %x %x], size=%u)\n", data, data[0], data[1], data[2], data[3], size);
__disable_irq();
if (HAL_SPI_TransmitReceive(SPI_HANDLE, data, data, size, SPI_TIMEOUT) != HAL_OK) {
//BREAK();
}
__enable_irq();
DEBUG_printf(" - rx data = [%x %x %x %x]\n", data[0], data[1], data[2], data[3]);
}
void SpiReadDataSynchronous(unsigned char *data, unsigned short size)
{
memset(data, READ, size);
__disable_irq();
if (HAL_SPI_TransmitReceive(SPI_HANDLE, data, data, size, SPI_TIMEOUT) != HAL_OK) {
//BREAK();
}
__enable_irq();
}
void SpiReadPacket(void)
{
int length;
/* read SPI header */
SpiReadDataSynchronous(sSpiInformation.pRxPacket, SPI_HEADER_SIZE);
/* parse data length */
STREAM_TO_UINT8(sSpiInformation.pRxPacket, SPI_HEADER_SIZE-1, length);
/* read the remainder of the packet */
SpiReadDataSynchronous(sSpiInformation.pRxPacket + SPI_HEADER_SIZE, length);
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
}
void SpiReadHeader(void)
{
SpiReadDataSynchronous(sSpiInformation.pRxPacket, 10);
}
void SpiTriggerRxProcessing(void)
{
SpiPauseSpi();
CS_HIGH();
// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. If the magic number is overriten - buffer overrun
// occurred - and we will stuck here forever!
if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER) {
while (1);
}
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
}
long SpiReadDataCont(void)
{
long data_to_recv=0;
unsigned char *evnt_buff, type;
//determine what type of packet we have
evnt_buff = sSpiInformation.pRxPacket;
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_PACKET_TYPE_OFFSET, type);
switch (type) {
case HCI_TYPE_DATA:{
// We need to read the rest of data..
STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_DATA_LENGTH_OFFSET, data_to_recv);
if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1)) {
data_to_recv++;
}
if (data_to_recv) {
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
break;
}
case HCI_TYPE_EVNT: {
// Calculate the rest length of the data
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_EVENT_LENGTH_OFFSET, data_to_recv);
data_to_recv -= 1;
// Add padding byte if needed
if ((HEADERS_SIZE_EVNT + data_to_recv) & 1) {
data_to_recv++;
}
if (data_to_recv) {
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
break;
}
}
return 0;
}
void SSIContReadOperation(void)
{
// The header was read - continue with the payload read
if (!SpiReadDataCont()) {
/* All the data was read - finalize handling by switching
to the task and calling from task Event Handler */
SpiTriggerRxProcessing();
}
}
STATIC mp_obj_t irq_callback(mp_obj_t line)
{
DEBUG_printf("<< IRQ; state=%lu >>\n", sSpiInformation.ulSpiState);
switch (sSpiInformation.ulSpiState) {
case eSPI_STATE_POWERUP:
/* This means IRQ line was low call a callback of HCI Layer to inform on event */
DEBUG_printf(" - POWERUP\n");
sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
break;
case eSPI_STATE_IDLE:
DEBUG_printf(" - IDLE\n");
sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
/* IRQ line goes down - we are start reception */
CS_LOW();
// Wait for TX/RX Compete which will come as DMA interrupt
SpiReadHeader();
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
SSIContReadOperation();
break;
case eSPI_STATE_WRITE_IRQ:
DEBUG_printf(" - WRITE IRQ\n");
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CS_HIGH();
break;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(irq_callback_obj, irq_callback);
|