summaryrefslogtreecommitdiffstatshomepage
path: root/cc3200/mods/pybtimer.c
blob: 1975cb4b25af21f070ae5990f3f4ad9501e00285 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 * Copyright (c) 2015 Daniel Campora
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include "py/mpconfig.h"
#include MICROPY_HAL_H
#include "py/obj.h"
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_timer.h"
#include "rom_map.h"
#include "interrupt.h"
#include "prcm.h"
#include "timer.h"
#include "pybtimer.h"
#include "pybsleep.h"
#include "mpcallback.h"
#include "mpexception.h"


/// \moduleref pyb
/// \class Timer - generate periodic events, count events, and create PWM signals.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)                                              # create a timer object using timer 4
///     tim.init(mode=Timer.PERIODIC)                                   # initialize it in periodic mode
///     tim_ch = tim.channel(Timer.A, freq=2)                           # configure channel A at a frequency of 2Hz
///     tim_ch.callback(handler=lambda t:led.toggle())                  # toggle a LED on every cycle of the timer
///
/// Further examples:
///
///     tim1 = pyb.Timer(2, mode=Timer.EVENT_COUNT)                     # initialize it capture mode
///     tim2 = pyb.Timer(1, mode=Timer.PWM)                             # initialize it in PWM mode
///     tim_ch = tim1.channel(Timer.A, freq=1, polarity=Timer.POSITIVE) # start the event counter with a frequency of 1Hz and triggered by positive edges
///     tim_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=50)       # start the PWM on channel B with a 50% duty cycle
///     tim_ch.time()                                                   # get the current time in usec (can also be set)
///     tim_ch.freq(20)                                                 # set the frequency (can also get)
///     tim_ch.duty_cycle(30)                                           # set the duty cycle to 30% (can also get)
///     tim_ch.duty_cycle(30, Timer.NEGATIVE)                           # set the duty cycle to 30% and change the polarity to negative
///     tim_ch.event_count()                                            # get the number of captured events
///     tim_ch.event_time()                                             # get the the time of the last captured event
///     tim_ch.period(2000000)                                          # change the period to 2 seconds
///

/******************************************************************************
 DECLARE PRIVATE CONSTANTS
 ******************************************************************************/
#define PYBTIMER_NUM_TIMERS                         (4)
#define PYBTIMER_POLARITY_POS                       (0x01)
#define PYBTIMER_POLARITY_NEG                       (0x02)

#define PYBTIMER_SRC_FREQ_HZ                        HAL_FCPU_HZ

/******************************************************************************
 DEFINE PRIVATE TYPES
 ******************************************************************************/
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
    uint32_t timer;
    uint32_t config;
    uint16_t intflags;
    uint8_t peripheral;
    uint8_t id;
} pyb_timer_obj_t;

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint32_t frequency;
    uint32_t period;
    uint16_t channel;
    uint8_t  polarity;
    uint8_t  duty_cycle;
} pyb_timer_channel_obj_t;

/******************************************************************************
 DEFINE PRIVATE DATA
 ******************************************************************************/
STATIC const mp_cb_methods_t pyb_timer_channel_cb_methods;
STATIC pyb_timer_obj_t pyb_timer_obj[PYBTIMER_NUM_TIMERS] = {{.timer = TIMERA0_BASE, .peripheral = PRCM_TIMERA0},
                                                             {.timer = TIMERA1_BASE, .peripheral = PRCM_TIMERA1},
                                                             {.timer = TIMERA2_BASE, .peripheral = PRCM_TIMERA2},
                                                             {.timer = TIMERA3_BASE, .peripheral = PRCM_TIMERA3}};
STATIC const mp_obj_type_t pyb_timer_channel_type;

/******************************************************************************
 DECLARE PRIVATE FUNCTIONS
 ******************************************************************************/
STATIC mp_obj_t pyb_timer_channel_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
STATIC void timer_disable (pyb_timer_obj_t *tim);
STATIC void TIMER0AIntHandler(void);
STATIC void TIMER0BIntHandler(void);
STATIC void TIMER1AIntHandler(void);
STATIC void TIMER1BIntHandler(void);
STATIC void TIMER2AIntHandler(void);
STATIC void TIMER2BIntHandler(void);
STATIC void TIMER3AIntHandler(void);
STATIC void TIMER3BIntHandler(void);

/******************************************************************************
 DEFINE PUBLIC FUNCTIONS
 ******************************************************************************/
void timer_init0 (void) {
    mp_obj_list_init(&MP_STATE_PORT(pyb_timer_channel_obj_list), 0);
}

void timer_disable_all (void) {
    pyb_timer_obj_t timer = {
            .timer = TIMERA0_BASE,
            .intflags = TIMER_CAPB_EVENT   | TIMER_CAPB_MATCH |
                        TIMER_TIMB_TIMEOUT | TIMER_CAPA_EVENT |
                        TIMER_CAPA_MATCH   | TIMER_TIMA_TIMEOUT,
            .peripheral = PRCM_TIMERA0
    };

    for (uint32_t i = 0; i < PYBTIMER_NUM_TIMERS; i++) {
        // in case it's not clocked
        MAP_PRCMPeripheralClkEnable(timer.peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
        timer_disable(&timer);
        // timer base offset according to hw_memmap.h
        timer.timer += 0x1000;
        // peripheral offset according to prcm.h
        timer.peripheral++;
    }
}

void pyb_timer_channel_callback_enable (mp_obj_t self_in) {
    pyb_timer_channel_obj_t *self = self_in;
    MAP_TimerIntClear(self->timer->timer, self->timer->intflags & self->channel);
    MAP_TimerIntEnable(self->timer->timer, self->timer->intflags & self->channel);
}

void pyb_timer_channel_callback_disable (mp_obj_t self_in) {
    pyb_timer_channel_obj_t *self = self_in;
    MAP_TimerIntDisable(self->timer->timer, self->timer->intflags & self->channel);
}

pyb_timer_channel_obj_t *pyb_timer_channel_find (uint32_t timer, uint16_t channel_n) {
    for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_timer_channel_obj_list).len; i++) {
        pyb_timer_channel_obj_t *ch = ((pyb_timer_channel_obj_t *)(MP_STATE_PORT(pyb_timer_channel_obj_list).items[i]));
        // any 32-bit timer must be matched by any of its 16-bit versions
        if (ch->timer->timer == timer && ((ch->channel & TIMER_A) == channel_n || (ch->channel & TIMER_B) == channel_n)) {
            return ch;
        }
    }
    return MP_OBJ_NULL;
}

void pyb_timer_channel_remove (pyb_timer_channel_obj_t *ch) {
    pyb_timer_channel_obj_t *channel;
    if ((channel = pyb_timer_channel_find(ch->timer->timer, ch->channel))) {
        mp_obj_list_remove(&MP_STATE_PORT(pyb_timer_channel_obj_list), channel);
    }
}

void pyb_timer_channel_add (pyb_timer_channel_obj_t *ch) {
    // remove it in case it already exists
    pyb_timer_channel_remove(ch);
    mp_obj_list_append(&MP_STATE_PORT(pyb_timer_channel_obj_list), ch);
}

STATIC void timer_disable (pyb_timer_obj_t *tim) {
    // disable all timers and it's interrupts
    MAP_TimerDisable(tim->timer, TIMER_A | TIMER_B);
    MAP_TimerIntDisable(tim->timer, tim->intflags);
    MAP_TimerIntClear(tim->timer, tim->intflags);
    MAP_PRCMPeripheralClkDisable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
    memset(&pyb_timer_obj[tim->id], 0, sizeof(pyb_timer_obj_t));
}

// computes prescaler period and match value so timer triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_and_match_value(pyb_timer_channel_obj_t *ch, uint32_t *period_out, uint32_t *match_out) {
    uint32_t maxcount = (ch->channel == (TIMER_A | TIMER_B)) ? 0xFFFFFFFF : 0xFFFF;
    uint32_t prescaler;
    uint32_t period_c = (ch->frequency > 0) ? PYBTIMER_SRC_FREQ_HZ / ch->frequency : ((PYBTIMER_SRC_FREQ_HZ / 1000000) * ch->period);

    period_c = MAX(1, period_c) - 1;
    if (period_c == 0) {
        goto error;
    }
    prescaler = period_c >> 16;
    *period_out = period_c;
    if (prescaler > 0xFF && maxcount == 0xFFFF) {
        goto error;
    }
    // check limit values for the duty cycle
    if (ch->duty_cycle == 0) {
        *match_out = period_c - 1;
    }
    else {
        *match_out = period_c - ((period_c * ch->duty_cycle) / 100);
    }
    if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM && (*match_out > 0xFFFF)) {
        goto error;
    }
    return prescaler;

error:
    nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}

STATIC void timer_init (pyb_timer_obj_t *tim) {
    MAP_PRCMPeripheralClkEnable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
    MAP_PRCMPeripheralReset(tim->peripheral);
    MAP_TimerConfigure(tim->timer, tim->config);
}

STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch) {
    // calculate the period, the prescaler and the match value
    uint32_t period_c;
    uint32_t match;
    uint32_t prescaler = compute_prescaler_period_and_match_value(ch, &period_c, &match);

    // set the prescaler
    MAP_TimerPrescaleSet(ch->timer->timer, ch->channel, (prescaler < 0xFF) ? prescaler : 0);

    // set the load value
    MAP_TimerLoadSet(ch->timer->timer, ch->channel, period_c);

    // configure the pwm if we are in such mode
    if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
        // invert the timer output if required
        MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
        // set the match value (which is simply the duty cycle translated to ticks)
        MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
    }
    // configure the event edge type if we are in such mode
    else if ((ch->timer->config & 0x0F) == TIMER_CFG_A_CAP_COUNT || (ch->timer->config & 0x0F) == TIMER_CFG_A_CAP_TIME) {
        uint32_t polarity = TIMER_EVENT_BOTH_EDGES;
        if (ch->polarity == PYBTIMER_POLARITY_POS) {
            polarity = TIMER_EVENT_POS_EDGE;
        }
        else if (ch->polarity == PYBTIMER_POLARITY_NEG) {
            polarity = TIMER_EVENT_NEG_EDGE;
        }
        MAP_TimerControlEvent(ch->timer->timer, ch->channel, polarity);
    }

#ifdef DEBUG
    // stall the timer when the processor is halted while debugging
    MAP_TimerControlStall(ch->timer->timer, ch->channel, true);
#endif

    // now enable the timer channel
    MAP_TimerEnable(ch->timer->timer, ch->channel);
}

/******************************************************************************/
/* Micro Python bindings                                                      */

STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_obj_t *tim = self_in;
    uint32_t mode = tim->config & 0xFF;

    // timer mode
    qstr mode_qst = MP_QSTR_PWM;
    switch(mode) {
    case TIMER_CFG_A_ONE_SHOT:
        mode_qst = MP_QSTR_ONE_SHOT;
        break;
    case TIMER_CFG_A_PERIODIC:
        mode_qst = MP_QSTR_PERIODIC;
        break;
    case TIMER_CFG_A_CAP_COUNT:
        mode_qst = MP_QSTR_EDGE_COUNT;
        break;
    case TIMER_CFG_A_CAP_TIME:
        mode_qst = MP_QSTR_EDGE_TIME;
        break;
    default:
        break;
    }
    mp_printf(print, "<Timer%u, mode=Timer.%q>", (tim->id + 1), mode_qst);
}

/// \method init(mode, *, width)
/// Initialise the timer.  Initialisation must give the desired mode
/// and an optional timer width
///
///     tim.init(mode=Timer.ONE_SHOT, width=32)        # one shot mode
///     tim.init(mode=Timer.PERIODIC)                  # configure in free running periodic mode
///                                                      split into two 16-bit independent timers
///
/// Keyword arguments:
///
///   - `width` - specifies the width of the timer. Default is 32 bit mode. When in 16 bit mode
///               the timer is splitted into 2 independent channels.
///
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,         MP_ARG_REQUIRED | MP_ARG_INT, },
        { MP_QSTR_width,        MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 16} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // check the mode
    uint32_t _mode = args[0].u_int;
    if (_mode != TIMER_CFG_A_ONE_SHOT && _mode != TIMER_CFG_A_PERIODIC && _mode != TIMER_CFG_A_CAP_COUNT &&
        _mode != TIMER_CFG_A_CAP_TIME && _mode != TIMER_CFG_A_PWM) {
        goto error;
    }

    // check the width
    if (args[1].u_int != 16 && args[1].u_int != 32) {
        goto error;
    }
    bool is16bit = (args[1].u_int == 16);

    if (!is16bit && (_mode != TIMER_CFG_A_ONE_SHOT && _mode != TIMER_CFG_A_PERIODIC)) {
        // 32-bit mode is only available when in free running modes
        goto error;
    }
    tim->config = is16bit ? ((_mode | (_mode << 8)) | TIMER_CFG_SPLIT_PAIR) : _mode;

    timer_init(tim);
    // register it with the sleep module
    pybsleep_add ((const mp_obj_t)tim, (WakeUpCB_t)timer_init);

    return mp_const_none;

error:
    nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}

/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 4
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create a new Timer object
    int32_t timer_idx = mp_obj_get_int(args[0]) - 1;
    if (timer_idx < 0 || timer_idx > (PYBTIMER_NUM_TIMERS - 1)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable));
    }

    pyb_timer_obj_t *tim = &pyb_timer_obj[timer_idx];
    tim->base.type = &pyb_timer_type;
    tim->id = timer_idx;

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }
    return (mp_obj_t)tim;
}

// \method init()
/// initializes the timer
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);

// \method deinit()
/// disables the timer
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    timer_disable(self);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

/// \method channel(channel, *, freq, period, polarity, duty_cycle)
/// Initialise the timer channel. Initialization requires at least a frequency param. With no
/// extra params given besides the channel id, the channel is returned with the previous configuration
/// os 'None', if it hasn't been initialized before.
///
///     tim1.channel(Timer.A, freq=1000)  # set channel A frequency to 1KHz
///     tim2.channel(Timer.AB, freq=10)   # both channels (because it's a 32 bit timer) combined to create a 10Hz timer
///
///     when initialiazing the channel of a 32-bit timer, channel ID MUST be = Timer.AB
///
/// Keyword arguments:
///
///   - `freq`       - specifies the frequency in Hz.
///   - `period`     - specifies the period in  microseconds.
///   - `polarity`   - in PWM specifies the polarity of the pulse. In capture mode specifies the edge to capture.
///                    in order to capture on both negative and positive edges, make it = Timer.POSITIVE | Timer.NEGATIVE.
///   - `duty_cycle` - sets the duty cycle value
///
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,                MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_period,              MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = PYBTIMER_POLARITY_POS} },
        { MP_QSTR_duty_cycle,          MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 0} },
    };

    pyb_timer_obj_t *tim = pos_args[0];
    mp_int_t channel_n = mp_obj_get_int(pos_args[1]);

    // verify that the timer has been already initialized
    if (!tim->config) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, mpexception_os_request_not_possible));
    }
    if (channel_n != TIMER_A && channel_n != TIMER_B && channel_n != (TIMER_A | TIMER_B)) {
        // invalid channel
        goto error;
    }
    if (channel_n == (TIMER_A | TIMER_B) && (tim->config & TIMER_CFG_SPLIT_PAIR)) {
        // 32-bit channel selected when the timer is in 16-bit mode
        goto error;
    }

    // if only the channel number is given return the previously
    // allocated channel (or None if no previous channel)
    if (n_args == 2 && kw_args->used == 0) {
        pyb_timer_channel_obj_t *ch;
        if ((ch = pyb_timer_channel_find(tim->timer, channel_n))) {
            return ch;
        }
        return mp_const_none;
    }

    // parse the arguments
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // throw an exception if both frequency and period are given
    if (args[0].u_int != 0 && args[1].u_int != 0) {
        goto error;
    }
    // check that at least one of them has a valid value
    if (args[0].u_int <= 0 && args[1].u_int <= 0) {
        goto error;
    }
    // check that the polarity is not 'both' in pwm mode
    if ((tim->config & TIMER_A) == TIMER_CFG_A_PWM && args[2].u_int == (PYBTIMER_POLARITY_POS | PYBTIMER_POLARITY_NEG)) {
        goto error;
    }

    // allocate a new timer channel
    pyb_timer_channel_obj_t *ch = m_new_obj(pyb_timer_channel_obj_t);
    ch->base.type = &pyb_timer_channel_type;
    ch->timer = tim;
    ch->channel = channel_n;

    // get the frequency the polarity and the duty cycle
    ch->frequency = args[0].u_int;
    ch->period = args[1].u_int;
    ch->polarity = args[2].u_int;
    ch->duty_cycle = MIN(100, MAX(0, args[3].u_int));

    timer_channel_init(ch);

    // register it with the sleep module
    pybsleep_add ((const mp_obj_t)ch, (WakeUpCB_t)timer_channel_init);

    // add the timer to the list
    pyb_timer_channel_add(ch);

    return ch;

error:
    nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);

STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init),                    (mp_obj_t)&pyb_timer_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit),                  (mp_obj_t)&pyb_timer_deinit_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_channel),                 (mp_obj_t)&pyb_timer_channel_obj },

    // class constants
    { MP_OBJ_NEW_QSTR(MP_QSTR_A),                       MP_OBJ_NEW_SMALL_INT(TIMER_A) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_B),                       MP_OBJ_NEW_SMALL_INT(TIMER_B) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ONE_SHOT),                MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_ONE_SHOT) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PERIODIC),                MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PERIODIC) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_EDGE_COUNT),              MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_CAP_COUNT) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_EDGE_TIME),               MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_CAP_TIME) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM),                     MP_OBJ_NEW_SMALL_INT(TIMER_CFG_A_PWM) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_POSITIVE),                MP_OBJ_NEW_SMALL_INT(PYBTIMER_POLARITY_POS) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_NEGATIVE),                MP_OBJ_NEW_SMALL_INT(PYBTIMER_POLARITY_NEG) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

STATIC const mp_cb_methods_t pyb_timer_channel_cb_methods = {
    .init = pyb_timer_channel_callback,
    .enable = pyb_timer_channel_callback_enable,
    .disable = pyb_timer_channel_callback_disable,
};

STATIC void TIMERGenericIntHandler(uint32_t timer, uint16_t channel) {
    pyb_timer_channel_obj_t *self;
    uint32_t status;

    if ((self = pyb_timer_channel_find(timer, channel))) {
        status = MAP_TimerIntStatus(self->timer->timer, true) & self->channel;
        MAP_TimerIntClear(self->timer->timer, status);
        mp_obj_t _callback = mpcallback_find(self);
        mpcallback_handler(_callback);
    }
}

STATIC void TIMER0AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA0_BASE, TIMER_A);
}

STATIC void TIMER0BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA0_BASE, TIMER_B);
}

STATIC void TIMER1AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA1_BASE, TIMER_A);
}

STATIC void TIMER1BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA1_BASE, TIMER_B);
}

STATIC void TIMER2AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA2_BASE, TIMER_A);
}

STATIC void TIMER2BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA2_BASE, TIMER_B);
}

STATIC void TIMER3AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA3_BASE, TIMER_A);
}

STATIC void TIMER3BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA3_BASE, TIMER_B);
}

STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_channel_obj_t *ch = self_in;
    char *ch_id = "AB";
    // timer channel
    if (ch->channel == TIMER_A) {
        ch_id = "A";
    }
    else if (ch->channel == TIMER_B) {
        ch_id = "B";
    }

    mp_printf(print, "<%q %s, timer=%u, %q=%u", MP_QSTR_TimerChannel,
              ch_id, (ch->timer->id + 1), MP_QSTR_freq, ch->frequency);

    uint32_t mode = ch->timer->config & 0xFF;
    if (mode == TIMER_CFG_A_CAP_COUNT || mode == TIMER_CFG_A_CAP_TIME || mode == TIMER_CFG_A_PWM) {
        mp_printf(print, ", %q=Timer.", MP_QSTR_polarity);
        switch (ch->polarity) {
            case PYBTIMER_POLARITY_POS:
                mp_printf(print, "POSITIVE");
                break;
            case PYBTIMER_POLARITY_NEG:
                mp_printf(print, "NEGATIVE");
                break;
            default:
                mp_printf(print, "BOTH");
                break;
        }
        if (mode == TIMER_CFG_A_PWM) {
            mp_printf(print, ", %q=%u", MP_QSTR_duty_cycle, ch->duty_cycle);
        }
    }
    mp_printf(print, ">");
}

/// \method freq([value])
/// get or set the frequency of the timer channel
STATIC mp_obj_t pyb_timer_channel_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(ch->frequency);
    } else {
        // set
        int32_t _frequency = mp_obj_get_int(args[1]);
        if (_frequency <= 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
        }
        ch->frequency = _frequency;
        ch->period = 1000000 / _frequency;
        timer_channel_init(ch);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_freq_obj, 1, 2, pyb_timer_channel_freq);

/// \method period([value])
/// get or set the period of the timer channel in microseconds
STATIC mp_obj_t pyb_timer_channel_period(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(ch->period);
    } else {
        // set
        int32_t _period = mp_obj_get_int(args[1]);
        if (_period <= 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
        }
        ch->period = _period;
        ch->frequency = 1000000 / _period;
        timer_channel_init(ch);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_period_obj, 1, 2, pyb_timer_channel_period);

/// \method time([value])
/// get or set the value of the timer channel in microseconds
STATIC mp_obj_t pyb_timer_channel_time(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    uint32_t value;
    // calculate the period, the prescaler and the match value
    uint32_t period_c;
    uint32_t match;
    (void)compute_prescaler_period_and_match_value(ch, &period_c, &match);
    if (n_args == 1) {
        // get
        value = (ch->channel == TIMER_B) ? HWREG(ch->timer->timer + TIMER_O_TBV) : HWREG(ch->timer->timer + TIMER_O_TAV);
        // return the current timer value in microseconds
        // substract value to period since we are always operating in count-down mode
        uint32_t time_t = (1000 * (period_c - value)) / period_c;
        return mp_obj_new_int((time_t * 1000) / ch->frequency);
    }
    else {
        // set
        value = (mp_obj_get_int(args[1]) * ((ch->frequency * period_c) / 1000)) / 1000;
        if ((value > 0xFFFF) && (ch->timer->config & TIMER_CFG_SPLIT_PAIR)) {
            // this exceeds the maximum value of a 16-bit timer
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
        }
        // write period minus value since we are always operating in count-down mode
        TimerValueSet (ch->timer->timer, ch->channel, (period_c - value));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_time_obj, 1, 2, pyb_timer_channel_time);

/// \method event_count()
/// get the number of events triggered by the configured edge
STATIC mp_obj_t pyb_timer_channel_event_count(mp_obj_t self_in) {
    pyb_timer_channel_obj_t *ch = self_in;
    return mp_obj_new_int(MAP_TimerValueGet(ch->timer->timer, ch->channel == (TIMER_A | TIMER_B) ? TIMER_A : ch->channel));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_channel_event_count_obj, pyb_timer_channel_event_count);

/// \method event_time()
/// get the time at which the last event was triggered
STATIC mp_obj_t pyb_timer_channel_event_time(mp_obj_t self_in) {
    pyb_timer_channel_obj_t *ch = self_in;
    // calculate the period, the prescaler and the match value
    uint32_t period_c;
    uint32_t match;
    (void)compute_prescaler_period_and_match_value(ch, &period_c, &match);
    uint32_t value = MAP_TimerValueGet(ch->timer->timer, ch->channel == (TIMER_A | TIMER_B) ? TIMER_A : ch->channel);
    // substract value to period since we are always operating in count-down mode
    uint32_t time_t = (1000 * (period_c - value)) / period_c;
    return mp_obj_new_int((time_t * 1000) / ch->frequency);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_channel_event_time_obj, pyb_timer_channel_event_time);

/// \method duty_cycle()
/// get or set the duty cycle when in PWM mode
STATIC mp_obj_t pyb_timer_channel_duty_cycle(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(ch->duty_cycle);
    }
    else {
        // duty cycle must be converted from percentage to ticks
        // calculate the period, the prescaler and the match value
        uint32_t period_c;
        uint32_t match;
        ch->duty_cycle = MIN(100, MAX(0, mp_obj_get_int(args[1])));
        compute_prescaler_period_and_match_value(ch, &period_c, &match);
        if (n_args == 3) {
            // set the new polarity if requested
            ch->polarity = mp_obj_get_int(args[2]);
            MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
        }
        MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_duty_cycle_obj, 1, 3, pyb_timer_channel_duty_cycle);

/// \method callback(handler, priority, value)
/// create a callback object associated with the timer channel
STATIC mp_obj_t pyb_timer_channel_callback (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    mp_arg_val_t args[mpcallback_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mpcallback_INIT_NUM_ARGS, mpcallback_init_args, args);

    pyb_timer_channel_obj_t *ch = pos_args[0];
    mp_obj_t _callback = mpcallback_find(ch);
    if (kw_args->used > 0 || !_callback) {
        // convert the priority to the correct value
        uint priority = mpcallback_translate_priority (args[2].u_int);

        // validate the power mode
        uint pwrmode = args[4].u_int;
        if (pwrmode != PYB_PWR_MODE_ACTIVE) {
            goto invalid_args;
        }

        uint32_t _config = (ch->channel == TIMER_B) ? ((ch->timer->config & TIMER_B) >> 8) : (ch->timer->config & TIMER_A);

        // validate and set the value if we are in edge count mode
        if (_config == TIMER_CFG_A_CAP_COUNT) {
            uint32_t c_value = args[3].u_int;
            if (!c_value || c_value > 0xFFFF) {
                // zero or exceeds the maximum value of a 16-bit timer
                goto invalid_args;
            }
            MAP_TimerMatchSet(ch->timer->timer, ch->channel, c_value);
        }

        // disable the callback first
        pyb_timer_channel_callback_disable(ch);

        uint8_t shift = (ch->channel == TIMER_B) ? 8 : 0;
        switch (_config) {
        case TIMER_CFG_A_ONE_SHOT:
        case TIMER_CFG_A_PERIODIC:
            ch->timer->intflags |= TIMER_TIMA_TIMEOUT << shift;
            break;
        case TIMER_CFG_A_CAP_COUNT:
            ch->timer->intflags |= TIMER_CAPA_MATCH << shift;
            // set the match value and make 1 the minimum
            MAP_TimerMatchSet(ch->timer->timer, ch->channel, MAX(1, args[3].u_int));
            break;
        case TIMER_CFG_A_CAP_TIME:
            ch->timer->intflags |= TIMER_CAPA_EVENT << shift;
            break;
        case TIMER_CFG_A_PWM:
            // special case for the PWM match interrupt
            ch->timer->intflags |= ((ch->channel & TIMER_A) == TIMER_A) ? TIMER_TIMA_MATCH : TIMER_TIMB_MATCH;
            break;
        default:
            break;
        }
        // special case for a 32-bit timer
        if (ch->channel == (TIMER_A | TIMER_B)) {
           ch->timer->intflags |= (ch->timer->intflags << 8);
        }

        void (*pfnHandler)(void);
        uint32_t intregister;
        switch (ch->timer->timer) {
        case TIMERA0_BASE:
            if (ch->channel == TIMER_B) {
                pfnHandler = &TIMER0BIntHandler;
                intregister = INT_TIMERA0B;
            } else {
                pfnHandler = &TIMER0AIntHandler;
                intregister = INT_TIMERA0A;
            }
            break;
        case TIMERA1_BASE:
            if (ch->channel == TIMER_B) {
                pfnHandler = &TIMER1BIntHandler;
                intregister = INT_TIMERA1B;
            } else {
                pfnHandler = &TIMER1AIntHandler;
                intregister = INT_TIMERA1A;
            }
            break;
        case TIMERA2_BASE:
            if (ch->channel == TIMER_B) {
                pfnHandler = &TIMER2BIntHandler;
                intregister = INT_TIMERA2B;
            } else {
                pfnHandler = &TIMER2AIntHandler;
                intregister = INT_TIMERA2A;
            }
            break;
        default:
            if (ch->channel == TIMER_B) {
                pfnHandler = &TIMER3BIntHandler;
                intregister = INT_TIMERA3B;
            } else {
                pfnHandler = &TIMER3AIntHandler;
                intregister = INT_TIMERA3A;
            }
            break;
        }

        // register the interrupt and configure the priority
        MAP_IntPrioritySet(intregister, priority);
        MAP_TimerIntRegister(ch->timer->timer, ch->channel, pfnHandler);

        // create the callback
        _callback = mpcallback_new (ch, args[1].u_obj, &pyb_timer_channel_cb_methods);

        // reload the timer
        uint32_t period_c;
        uint32_t match;
        compute_prescaler_period_and_match_value(ch, &period_c, &match);
        MAP_TimerLoadSet(ch->timer->timer, ch->channel, period_c);

        // enable the callback before returning
        pyb_timer_channel_callback_enable(ch);
    }
    return _callback;

invalid_args:
    nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_callback_obj, 1, pyb_timer_channel_callback);

STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq),                 (mp_obj_t)&pyb_timer_channel_freq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_period),               (mp_obj_t)&pyb_timer_channel_period_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_time),                 (mp_obj_t)&pyb_timer_channel_time_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_event_count),          (mp_obj_t)&pyb_timer_channel_event_count_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_event_time),           (mp_obj_t)&pyb_timer_channel_event_time_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_duty_cycle),           (mp_obj_t)&pyb_timer_channel_duty_cycle_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback),             (mp_obj_t)&pyb_timer_channel_callback_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);

STATIC const mp_obj_type_t pyb_timer_channel_type = {
    { &mp_type_type },
    .name = MP_QSTR_TimerChannel,
    .print = pyb_timer_channel_print,
    .locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};