| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
| |
Recent MSVC versions have changed the definition of NAN to a non-constant
expression! This is a bug, C standard says it should be a constant.
Good explanation and workaround at: https://stackoverflow.com/a/79199887
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The STATIC macro was introduced a very long time ago in commit
d5df6cd44a433d6253a61cb0f987835fbc06b2de. The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.
This STATIC feature is rarely (if ever) used. And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.
So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing. For example, newcomers don't have
to learn what the STATIC macro is and why it exists. Reading the code is
also less "loud" with a lowercase static.
One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.
Methodology for this commit was:
1) git ls-files | egrep '\.[ch]$' | \
xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"
2) Do some manual cleanup in the diff by searching for the word STATIC in
comments and changing those back.
3) "git-grep STATIC docs/", manually fixed those cases.
4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of being an explicit field, it's now a slot like all the other
methods.
This is a marginal code size improvement because most types have a make_new
(100/138 on PYBV11), however it improves consistency in how types are
declared, removing the special case for make_new.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
|
|
|
|
|
|
| |
In preparation for upcoming rework of mp_obj_type_t layout.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
|
|
|
|
|
|
| |
To reduce code size when MICROPY_PY_BUILTINS_COMPLEX is disabled.
Signed-off-by: Damien George <damien@micropython.org>
|
|
|
|
| |
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
|
|
|
|
| |
Configurable by the new MICROPY_PY_MATH_CONSTANTS option.
|
|
|
|
|
|
| |
To give this macro a standard MP_ prefix.
Signed-off-by: Damien George <damien@micropython.org>
|
|
|
|
|
| |
Adds a new compile-time option MICROPY_PY_MATH_POW_FIX_NAN for use with
toolchains that don't handle pow-of-NaN correctly.
|
|
|
|
|
|
|
|
| |
Prior to this commit, pow(-2, float('nan')) would return (nan+nanj), or
raise an exception on targets that don't support complex numbers. This is
fixed to return simply nan, as CPython does.
Signed-off-by: Damien George <damien@micropython.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Initially some of these were found building the unix coverage variant on
MacOS because that build uses clang and has -Wdouble-promotion enabled, and
clang performs more vigorous promotion checks than gcc. Additionally the
codebase has been compiled with clang and msvc (the latter with warning
level 3), and with MICROPY_FLOAT_IMPL_FLOAT to find the rest of the
conversions.
Fixes are implemented either as explicit casts, or by using the correct
type, or by using one of the utility functions to handle floating point
casting; these have been moved from nativeglue.c to the public API.
|
| |
|
|
|
|
| |
This is run with uncrustify 0.70.1, and black 19.10b0.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Both bool and namedtuple will check against other types for equality; int,
float and complex for bool, and tuple for namedtuple. So to make them work
after the recent commit 3aab54bf434e7f025a91ea05052f1bac439fad8c they would
need MP_TYPE_FLAG_NEEDS_FULL_EQ_TEST set. But that makes all bool and
namedtuple equality checks less efficient because mp_obj_equal_not_equal()
could no longer short-cut x==x, and would need to try __ne__. To improve
this, this commit splits the MP_TYPE_FLAG_NEEDS_FULL_EQ_TEST flags into 3
separate flags to give types more fine-grained control over how their
equality behaves. These new flags are then used to fix bool and namedtuple
equality.
Fixes issue #5615 and #5620.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements a more complete replication of CPython's behaviour
for equality and inequality testing of objects. This addresses the issues
discussed in #5382 and a few other inconsistencies. Improvements over the
old code include:
- Support for returning non-boolean results from comparisons (as used by
numpy and others).
- Support for non-reflexive equality tests.
- Preferential use of __ne__ methods and MP_BINARY_OP_NOT_EQUAL binary
operators for inequality tests, when available.
- Fallback to op2 == op1 or op2 != op1 when op1 does not implement the
(in)equality operators.
The scheme here makes use of a new flag, MP_TYPE_FLAG_NEEDS_FULL_EQ_TEST,
in the flags word of mp_obj_type_t to indicate if various shortcuts can or
cannot be used when performing equality and inequality tests. Currently
four built-in classes have the flag set: float and complex are
non-reflexive (since nan != nan) while bytearray and frozenszet instances
can equal other builtin class instances (bytes and set respectively). The
flag is also set for any new class defined by the user.
This commit also includes a more comprehensive set of tests for the
behaviour of (in)equality operators implemented in special methods.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These macros could in principle be (inline) functions so it makes sense to
have them lower case, to match the other C API functions.
The remaining macros that are upper case are:
- MP_OBJ_TO_PTR, MP_OBJ_FROM_PTR
- MP_OBJ_NEW_SMALL_INT, MP_OBJ_SMALL_INT_VALUE
- MP_OBJ_NEW_QSTR, MP_OBJ_QSTR_VALUE
- MP_OBJ_FUN_MAKE_SIG
- MP_DECLARE_CONST_xxx
- MP_DEFINE_CONST_xxx
These must remain macros because they are used when defining const data (at
least, MP_OBJ_NEW_SMALL_INT is so it makes sense to have
MP_OBJ_SMALL_INT_VALUE also a macro).
For those macros that have been made lower case, compatibility macros are
provided for the old names so that users do not need to change their code
immediately.
|
|
|
|
|
|
| |
Nan and inf (signed and unsigned) are also handled correctly by using
signbit (they were also handled correctly with "val<0", but that didn't
handle -0.0 correctly). A test case is added for this behaviour.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Under ubsan, when evaluating hash(-0.) the following diagnostic occurs:
../../py/objfloat.c:102:15: runtime error: negation of
-9223372036854775808 cannot be represented in type 'mp_int_t' (aka
'long'); cast to an unsigned type to negate this value to itself
So do just that, to tell the compiler that we want to perform this
operation using modulo arithmetic rules.
|
|
|
|
|
|
|
|
|
|
| |
When computing e.g. hash(0.4e3) with ubsan enabled, a diagnostic like the
following would occur:
../../py/objfloat.c:91:30: runtime error: shift exponent 44 is too
large for 32-bit type 'int'
By casting constant "1" to the right type the intended value is preserved.
|
|
|
|
| |
It was raising an exception but it should return infinity.
|
|
|
|
| |
This generalises and simplifies the code and follows CPython behaviour.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Header files that are considered internal to the py core and should not
normally be included directly are:
py/nlr.h - internal nlr configuration and declarations
py/bc0.h - contains bytecode macro definitions
py/runtime0.h - contains basic runtime enums
Instead, the top-level header files to include are one of:
py/obj.h - includes runtime0.h and defines everything to use the
mp_obj_t type
py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
and defines everything to use the general runtime support functions
Additional, specific headers (eg py/objlist.h) can be included if needed.
|
|
|
|
|
|
| |
This returns a complex number, following CPython behaviour. For ports that
don't have complex numbers enabled this will raise a ValueError which gives
a fail-safe for scripts that were written assuming complex numbers exist.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This allows user classes to implement __abs__ special method, and saves
code size (104 bytes for x86_64), even though during refactor, an issue
was fixed and few optimizations were made:
* abs() of minimum (negative) small int value is calculated properly.
* objint_longlong and objint_mpz avoid allocating new object is the
argument is already non-negative.
|
|
|
|
|
|
|
|
|
|
|
| |
These are now returned as "operation not supported" instead of raising
TypeError. In particular, this fixes equality for float vs incompatible
types, which now properly results in False instead of exception. This
also paves the road to support reverse operation (e.g. __radd__) with
float objects.
This is achieved by introducing mp_obj_get_float_maybe(), similar to
existing mp_obj_get_int_maybe().
|
|
|
|
|
|
|
| |
The unary-op/binary-op enums are already defined, and there are no
arithmetic tricks used with these types, so it makes sense to use the
correct enum type for arguments that take these values. It also reduces
code size quite a bit for nan-boxing builds.
|
|
|
|
|
| |
There were several different spellings of MicroPython present in comments,
when there should be only one.
|
|
|
|
|
| |
With 30-bit floats there aren't enough bits to faithfully print 7 decimal
digits, so reduce the precision to 6 digits.
|
|
|
|
| |
Disabled by default.
|
|
|
|
|
|
|
|
|
|
| |
Hashing of float and complex numbers that are exact (real) integers should
return the same integer hash value as hashing the corresponding integer
value. Eg hash(1), hash(1.0) and hash(1+0j) should all be the same (this
is how Python is specified: if x==y then hash(x)==hash(y)).
This patch implements the simplest way of doing float/complex hashing by
just converting the value to int and returning that value.
|
| |
|
| |
|
|
|
|
|
| |
Saves the following number of bytes of code space: 176 for bare-arm, 352
for minimal, 272 for unix x86-64, 140 for stmhal, 120 for esp8266.
|
|
|
|
|
|
| |
In some compliation enviroments (e.g. mbed online compiler) with
strict standards compliance, <math.h> does not define constants such
as M_PI. Provide fallback definitions of M_E and M_PI where needed.
|
|
|
|
|
|
|
|
| |
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.
|
|
|
|
|
|
|
| |
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To use, put the following in mpconfigport.h:
#define MICROPY_OBJ_REPR (MICROPY_OBJ_REPR_D)
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_DOUBLE)
typedef int64_t mp_int_t;
typedef uint64_t mp_uint_t;
#define UINT_FMT "%llu"
#define INT_FMT "%lld"
Currently does not work with native emitter enabled.
|
|
|
|
|
|
|
|
|
| |
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
|
|
|
|
|
|
| |
This new object representation puts floats into the object word instead
of on the heap, at the expense of reducing their precision to 30 bits.
It only makes sense when the word size is 32-bits.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
This allows using (almost) the same code for printing floats everywhere,
removes the dependency on sprintf and uses just snprintf and
applies an msvc-specific fix for snprintf in a single place so
nan/inf are now printed correctly.
|
| |
|