summaryrefslogtreecommitdiffstatshomepage
path: root/py
diff options
context:
space:
mode:
Diffstat (limited to 'py')
-rw-r--r--py/compile2.c3419
-rw-r--r--py/emit.h4
-rw-r--r--py/emitglue.c1
-rw-r--r--py/emitinlinethumb.c132
-rw-r--r--py/gc.c8
-rw-r--r--py/grammar.h3
-rw-r--r--py/malloc.c5
-rw-r--r--py/misc.h1
-rw-r--r--py/parse.h1
-rw-r--r--py/parse2.c1433
-rw-r--r--py/parse2.h133
-rw-r--r--py/py.mk4
-rw-r--r--py/scope.c6
-rw-r--r--py/scope.h5
-rw-r--r--py/vstr.c4
15 files changed, 5074 insertions, 85 deletions
diff --git a/py/compile2.c b/py/compile2.c
new file mode 100644
index 0000000000..ef9e434723
--- /dev/null
+++ b/py/compile2.c
@@ -0,0 +1,3419 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2013-2016 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <assert.h>
+
+#include "py/scope.h"
+#include "py/emit.h"
+#include "py/compile.h"
+#include "py/runtime.h"
+
+#if MICROPY_ENABLE_COMPILER
+
+// TODO need to mangle __attr names
+
+typedef enum {
+#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
+#include "py/grammar.h"
+#undef DEF_RULE
+ PN_maximum_number_of,
+} pn_kind_t;
+
+#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
+
+#if NEED_METHOD_TABLE
+
+// we need a method table to do the lookup for the emitter functions
+#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
+#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
+#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
+#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))
+
+#else
+
+// if we only have the bytecode emitter enabled then we can do a direct call to the functions
+#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
+#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
+#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
+#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))
+
+#endif
+
+#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
+#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
+
+// elements in this struct are ordered to make it compact
+typedef struct _compiler_t {
+ qstr source_file;
+
+ uint8_t is_repl;
+ uint8_t pass; // holds enum type pass_kind_t
+ uint8_t func_arg_is_super; // used to compile special case of super() function call
+ uint8_t have_star;
+
+ // try to keep compiler clean from nlr
+ mp_obj_t compile_error; // set to an exception object if there's an error
+ size_t compile_error_line; // set to best guess of line of error
+
+ uint next_label;
+
+ uint16_t num_dict_params;
+ uint16_t num_default_params;
+
+ uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
+ uint16_t continue_label;
+ uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
+ uint16_t break_continue_except_level;
+
+ mp_uint_t *co_data;
+
+ size_t num_scopes;
+ scope_t **scopes;
+ scope_t *scope_cur;
+
+ emit_t *emit; // current emitter
+ #if NEED_METHOD_TABLE
+ const emit_method_table_t *emit_method_table; // current emit method table
+ #endif
+
+ #if MICROPY_EMIT_INLINE_THUMB
+ emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
+ const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
+ #endif
+} compiler_t;
+
+STATIC void compile_error_set_line(compiler_t *comp, const byte *p) {
+ // if the line of the error is unknown then try to update it from the parse data
+ if (comp->compile_error_line == 0 && p != NULL && pt_is_any_rule(p)) {
+ size_t rule_id, src_line;
+ const byte *ptop;
+ pt_rule_extract(p, &rule_id, &src_line, &ptop);
+ comp->compile_error_line = src_line;
+ }
+}
+
+STATIC void compile_syntax_error(compiler_t *comp, const byte *p, const char *msg) {
+ // only register the error if there has been no other error
+ if (comp->compile_error == MP_OBJ_NULL) {
+ comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
+ compile_error_set_line(comp, p);
+ }
+}
+
+STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra);
+STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind);
+STATIC const byte *compile_node(compiler_t *comp, const byte *p);
+
+STATIC uint comp_next_label(compiler_t *comp) {
+ return comp->next_label++;
+}
+
+STATIC void compile_increase_except_level(compiler_t *comp) {
+ comp->cur_except_level += 1;
+ if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
+ comp->scope_cur->exc_stack_size = comp->cur_except_level;
+ }
+}
+
+STATIC void compile_decrease_except_level(compiler_t *comp) {
+ assert(comp->cur_except_level > 0);
+ comp->cur_except_level -= 1;
+}
+
+STATIC void scope_new_and_link(compiler_t *comp, size_t scope_idx, scope_kind_t kind, const byte *p, uint emit_options) {
+ scope_t *scope = scope_new(kind, p, comp->source_file, emit_options);
+ scope->parent = comp->scope_cur;
+ comp->scopes[scope_idx] = scope;
+}
+
+typedef void (*apply_list_fun_t)(compiler_t *comp, const byte *p);
+
+STATIC void apply_to_single_or_list(compiler_t *comp, const byte *p, pn_kind_t pn_list_kind, apply_list_fun_t f) {
+ if (pt_is_rule(p, pn_list_kind)) {
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+ while (p != ptop) {
+ f(comp, p);
+ p = pt_next(p);
+ }
+ } else if (!pt_is_null(p)) {
+ f(comp, p);
+ }
+}
+
+STATIC void compile_generic_all_nodes(compiler_t *comp, const byte *p, const byte *ptop) {
+ while (p != ptop) {
+ //printf("NODE: %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3]);
+ p = compile_node(comp, p);
+ }
+}
+
+STATIC void compile_load_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_load(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_store_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void c_tuple(compiler_t *comp, const byte *p, const byte *p_list, const byte *p_list_top) {
+ int total = 0;
+ if (p != NULL) {
+ compile_node(comp, p);
+ total += 1;
+ }
+ while (p_list != p_list_top) {
+ p_list = compile_node(comp, p_list);
+ total += 1;
+ }
+ EMIT_ARG(build_tuple, total);
+}
+
+STATIC void compile_generic_tuple(compiler_t *comp, const byte *p, const byte *ptop) {
+ // a simple tuple expression
+ c_tuple(comp, NULL, p, ptop);
+}
+
+STATIC bool node_is_const_false(const byte *p) {
+ return pt_is_tok(p, MP_TOKEN_KW_FALSE)
+ || (pt_is_small_int(p) && pt_small_int_value(p) == 0);
+}
+
+STATIC bool node_is_const_true(const byte *p) {
+ return pt_is_tok(p, MP_TOKEN_KW_TRUE)
+ || (pt_is_small_int(p) && pt_small_int_value(p) != 0);
+}
+
+STATIC const byte *c_if_cond(compiler_t *comp, const byte *p, bool jump_if, int label) {
+ if (node_is_const_false(p)) {
+ if (jump_if == false) {
+ EMIT_ARG(jump, label);
+ }
+ return pt_next(p);
+ } else if (node_is_const_true(p)) {
+ if (jump_if == true) {
+ EMIT_ARG(jump, label);
+ }
+ return pt_next(p);
+ } else if (pt_is_any_rule(p)) {
+ const byte *ptop;
+ const byte *p2 = pt_rule_extract_top(p, &ptop);
+ if (pt_is_rule(p, PN_or_test)) {
+ if (jump_if == false) {
+ and_or_logic1:;
+ uint label2 = comp_next_label(comp);
+ while (pt_next(p2) != ptop) {
+ p2 = c_if_cond(comp, p2, !jump_if, label2);
+ }
+ p2 = c_if_cond(comp, p2, jump_if, label);
+ EMIT_ARG(label_assign, label2);
+ } else {
+ and_or_logic2:
+ while (p2 != ptop) {
+ p2 = c_if_cond(comp, p2, jump_if, label);
+ }
+ }
+ return p2;
+ } else if (pt_is_rule(p, PN_and_test)) {
+ if (jump_if == false) {
+ goto and_or_logic2;
+ } else {
+ goto and_or_logic1;
+ }
+ } else if (pt_is_rule(p, PN_not_test_2)) {
+ return c_if_cond(comp, p2, !jump_if, label);
+ } else if (pt_is_rule(p, PN_atom_paren)) {
+ // cond is something in parenthesis
+ if (pt_is_rule_empty(p)) {
+ // empty tuple, acts as false for the condition
+ if (jump_if == false) {
+ EMIT_ARG(jump, label);
+ }
+ } else {
+ assert(pt_is_rule(pt_rule_first(p), PN_testlist_comp));
+ // non-empty tuple, acts as true for the condition
+ if (jump_if == true) {
+ EMIT_ARG(jump, label);
+ }
+ }
+ return pt_next(p);
+ }
+ }
+
+ // nothing special, fall back to default compiling for node and jump
+ p = compile_node(comp, p);
+ EMIT_ARG(pop_jump_if, jump_if, label);
+ return p;
+}
+
+typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
+STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t kind);
+
+STATIC void c_assign_power(compiler_t *comp, const byte *p_orig, assign_kind_t assign_kind) {
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p_orig, &ptop);
+
+ if (assign_kind != ASSIGN_AUG_STORE) {
+ compile_node(comp, p0);
+ }
+
+ const byte *p1 = pt_next(p0);
+
+ if (pt_is_null_with_top(p1, ptop)) {
+ cannot_assign:
+ compile_syntax_error(comp, p_orig, "can't assign to expression");
+ return;
+ }
+
+ if (pt_is_rule(p1, PN_power_trailers)) {
+ const byte *p1top;
+ p1 = pt_rule_extract_top(p1, &p1top);
+ for (;;) {
+ const byte *p1next = pt_next(p1);
+ if (p1next >= p1top) {
+ break;
+ }
+ if (assign_kind != ASSIGN_AUG_STORE) {
+ compile_node(comp, p1);
+ }
+ p1 = p1next;
+ }
+ // p1 now points to final trailer for store
+ }
+
+ if (pt_is_rule(p1, PN_trailer_bracket)) {
+ if (assign_kind == ASSIGN_AUG_STORE) {
+ EMIT(rot_three);
+ EMIT(store_subscr);
+ } else {
+ compile_node(comp, pt_rule_first(p1));
+ if (assign_kind == ASSIGN_AUG_LOAD) {
+ EMIT(dup_top_two);
+ EMIT(load_subscr);
+ } else {
+ EMIT(store_subscr);
+ }
+ }
+ } else if (pt_is_rule(p1, PN_trailer_period)) {
+ qstr attr;
+ pt_extract_id(pt_rule_first(p1), &attr);
+ if (assign_kind == ASSIGN_AUG_LOAD) {
+ EMIT(dup_top);
+ EMIT_ARG(load_attr, attr);
+ } else {
+ if (assign_kind == ASSIGN_AUG_STORE) {
+ EMIT(rot_two);
+ }
+ EMIT_ARG(store_attr, attr);
+ }
+ } else {
+ goto cannot_assign;
+ }
+
+ if (!pt_is_null_with_top(pt_next(p1), ptop)) {
+ goto cannot_assign;
+ }
+}
+
+// we need to allow for a caller passing in 1 initial node followed by an array of nodes
+STATIC void c_assign_tuple(compiler_t *comp, const byte *p_head, const byte *p_tail, const byte *p_tail_top) {
+ uint num_head = (p_head == NULL) ? 0 : 1;
+ uint num_tail = pt_num_nodes(p_tail, p_tail_top);
+
+ // look for star expression
+ const byte *p_star = NULL;
+ if (num_head != 0 && pt_is_rule(p_head, PN_star_expr)) {
+ EMIT_ARG(unpack_ex, 0, num_tail);
+ p_star = p_head;
+ }
+ uint i = 0;
+ for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p), ++i) {
+ if (pt_is_rule(p, PN_star_expr)) {
+ if (p_star == NULL) {
+ EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
+ p_star = p;
+ } else {
+ compile_syntax_error(comp, p, "multiple *x in assignment");
+ return;
+ }
+ }
+ }
+ if (p_star == NULL) {
+ EMIT_ARG(unpack_sequence, num_head + num_tail);
+ }
+ if (num_head != 0) {
+ if (p_head == p_star) {
+ c_assign(comp, pt_rule_first(p_head), ASSIGN_STORE);
+ } else {
+ c_assign(comp, p_head, ASSIGN_STORE);
+ }
+ }
+ for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p)) {
+ if (p == p_star) {
+ c_assign(comp, pt_rule_first(p), ASSIGN_STORE);
+ } else {
+ c_assign(comp, p, ASSIGN_STORE);
+ }
+ }
+}
+
+// assigns top of stack to pn
+STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t assign_kind) {
+ assert(!pt_is_null(p));
+ if (pt_is_any_id(p)) {
+ qstr arg;
+ p = pt_extract_id(p, &arg);
+ switch (assign_kind) {
+ case ASSIGN_STORE:
+ case ASSIGN_AUG_STORE:
+ compile_store_id(comp, arg);
+ break;
+ case ASSIGN_AUG_LOAD:
+ default:
+ compile_load_id(comp, arg);
+ break;
+ }
+ } else if (!pt_is_any_rule(p)) {
+ compile_syntax_error(comp, p, "can't assign to literal");
+ } else {
+ switch (pt_rule_extract_rule_id(p)) {
+ case PN_power:
+ // lhs is an index or attribute
+ c_assign_power(comp, p, assign_kind);
+ break;
+
+ case PN_testlist_star_expr:
+ case PN_exprlist: {
+ // lhs is a tuple
+ if (assign_kind != ASSIGN_STORE) {
+ goto bad_aug;
+ }
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+ c_assign_tuple(comp, NULL, p0, ptop);
+ break;
+ }
+
+ case PN_atom_paren: {
+ // lhs is something in parenthesis
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+ if (pt_is_null_with_top(p0, ptop)) {
+ // empty tuple
+ goto cannot_assign;
+ } else {
+ assert(pt_is_rule(p0, PN_testlist_comp));
+ if (assign_kind != ASSIGN_STORE) {
+ goto bad_aug;
+ }
+ p = p0;
+ goto testlist_comp;
+ }
+ break;
+ }
+
+ case PN_atom_bracket: {
+ // lhs is something in brackets
+ if (assign_kind != ASSIGN_STORE) {
+ goto bad_aug;
+ }
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop); // skip rule header
+ if (pt_is_null_with_top(p0, ptop)) {
+ // empty list, assignment allowed
+ c_assign_tuple(comp, NULL, NULL, NULL);
+ } else if (pt_is_rule(p0, PN_testlist_comp)) {
+ p = p0;
+ goto testlist_comp;
+ } else {
+ // brackets around 1 item
+ c_assign_tuple(comp, p0, NULL, NULL);
+ }
+ break;
+ }
+
+ default:
+ goto cannot_assign;
+ }
+ return;
+
+ testlist_comp:;
+ // lhs is a sequence
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+ const byte *p1 = pt_next(p0);
+ if (pt_is_rule(p1, PN_testlist_comp_3b)) {
+ // sequence of one item, with trailing comma
+ assert(pt_is_rule_empty(p1));
+ c_assign_tuple(comp, p0, NULL, NULL);
+ } else if (pt_is_rule(p1, PN_testlist_comp_3c)) {
+ // sequence of many items
+ p1 = pt_rule_extract_top(p1, &ptop);
+ c_assign_tuple(comp, p0, p1, ptop);
+ } else if (pt_is_rule(p1, PN_comp_for)) {
+ // TODO can we ever get here? can it be compiled?
+ goto cannot_assign;
+ } else {
+ // sequence with 2 items
+ c_assign_tuple(comp, NULL, p0, pt_next(p1));
+ }
+ }
+ return;
+
+ cannot_assign:
+ compile_syntax_error(comp, p, "can't assign to expression");
+ return;
+
+ bad_aug:
+ compile_syntax_error(comp, p, "illegal expression for augmented assignment");
+}
+
+// stuff for lambda and comprehensions and generators:
+// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
+// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
+// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
+STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
+ assert(n_pos_defaults >= 0);
+ assert(n_kw_defaults >= 0);
+
+ // set flags
+ if (n_kw_defaults > 0) {
+ this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
+ }
+ this_scope->num_def_pos_args = n_pos_defaults;
+
+ // make closed over variables, if any
+ // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
+ int nfree = 0;
+ if (comp->scope_cur->kind != SCOPE_MODULE) {
+ for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
+ id_info_t *id = &comp->scope_cur->id_info[i];
+ if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
+ for (int j = 0; j < this_scope->id_info_len; j++) {
+ id_info_t *id2 = &this_scope->id_info[j];
+ if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
+ // in Micro Python we load closures using LOAD_FAST
+ EMIT_LOAD_FAST(id->qst, id->local_num);
+ nfree += 1;
+ }
+ }
+ }
+ }
+ }
+
+ // make the function/closure
+ if (nfree == 0) {
+ EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
+ } else {
+ EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
+ }
+}
+
+STATIC void compile_funcdef_lambdef_param(compiler_t *comp, const byte *p) {
+ const byte *p_orig = p;
+
+ if (pt_is_rule(p, PN_typedargslist_star)
+ || pt_is_rule(p, PN_varargslist_star)) {
+ comp->have_star = true;
+ /* don't need to distinguish bare from named star
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // bare star
+ } else {
+ // named star
+ }
+ */
+
+ } else if (pt_is_rule(p, PN_typedargslist_dbl_star)
+ || pt_is_rule(p, PN_varargslist_dbl_star)) {
+ // named double star
+ // TODO do we need to do anything with this?
+
+ } else {
+ const byte *p_id;
+ const byte *p_colon = NULL;
+ const byte *p_equal = NULL;
+ if (pt_is_any_id(p)) {
+ // this parameter is just an id
+
+ p_id = p;
+
+ } else if (pt_is_rule(p, PN_typedargslist_name)) {
+ // this parameter has a colon and/or equal specifier
+
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+
+ p_id = p;
+ p = pt_next(p);
+ if (p != ptop) {
+ p_colon = p;
+ p = pt_next(p);
+ if (p != ptop) {
+ p_equal = p;
+ }
+ }
+
+ } else {
+ assert(pt_is_rule(p, PN_varargslist_name)); // should be
+ // this parameter has an equal specifier
+
+ p_id = pt_rule_first(p);
+ p_equal = pt_next(p_id);
+ }
+
+ qstr q_id;
+ pt_extract_id(p_id, &q_id);
+
+ if (p_equal == NULL || pt_is_null(p_equal)) {
+ // this parameter does not have a default value
+
+ // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
+ if (!comp->have_star && comp->num_default_params != 0) {
+ compile_syntax_error(comp, p_orig, "non-default argument follows default argument");
+ return;
+ }
+
+ } else {
+ // this parameter has a default value
+ // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
+
+ if (comp->have_star) {
+ comp->num_dict_params += 1;
+ // in Micro Python we put the default dict parameters into a dictionary using the bytecode
+ if (comp->num_dict_params == 1) {
+ // in Micro Python we put the default positional parameters into a tuple using the bytecode
+ // we need to do this here before we start building the map for the default keywords
+ if (comp->num_default_params > 0) {
+ EMIT_ARG(build_tuple, comp->num_default_params);
+ } else {
+ EMIT(load_null); // sentinel indicating empty default positional args
+ }
+ // first default dict param, so make the map
+ EMIT_ARG(build_map, 0);
+ }
+
+ // compile value then key, then store it to the dict
+ compile_node(comp, p_equal);
+ EMIT_ARG(load_const_str, q_id);
+ EMIT(store_map);
+ } else {
+ comp->num_default_params += 1;
+ compile_node(comp, p_equal);
+ }
+ }
+
+ // TODO p_colon not implemented
+ (void)p_colon;
+ }
+}
+
+STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, const byte *p, pn_kind_t pn_list_kind) {
+ // When we call compile_funcdef_lambdef_param below it can compile an arbitrary
+ // expression for default arguments, which may contain a lambda. The lambda will
+ // call here in a nested way, so we must save and restore the relevant state.
+ bool orig_have_star = comp->have_star;
+ uint16_t orig_num_dict_params = comp->num_dict_params;
+ uint16_t orig_num_default_params = comp->num_default_params;
+
+ // compile default parameters
+ comp->have_star = false;
+ comp->num_dict_params = 0;
+ comp->num_default_params = 0;
+ apply_to_single_or_list(comp, p, pn_list_kind, compile_funcdef_lambdef_param);
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ return;
+ }
+
+ // in Micro Python we put the default positional parameters into a tuple using the bytecode
+ // the default keywords args may have already made the tuple; if not, do it now
+ if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
+ EMIT_ARG(build_tuple, comp->num_default_params);
+ EMIT(load_null); // sentinel indicating empty default keyword args
+ }
+
+ // make the function
+ close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
+
+ // restore state
+ comp->have_star = orig_have_star;
+ comp->num_dict_params = orig_num_dict_params;
+ comp->num_default_params = orig_num_default_params;
+}
+
+// leaves function object on stack
+// returns function name
+STATIC qstr compile_funcdef_helper(compiler_t *comp, const byte *p, uint emit_options) {
+ mp_int_t scope_idx;
+ p = pt_get_small_int(p, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this function
+ scope_new_and_link(comp, scope_idx, SCOPE_FUNCTION, p, emit_options);
+ }
+
+ p = pt_next(p); // skip function name
+
+ // get the scope for this function
+ scope_t *fscope = comp->scopes[scope_idx];
+
+ // compile the function definition
+ compile_funcdef_lambdef(comp, fscope, p, PN_typedargslist);
+
+ // return its name (the 'f' in "def f(...):")
+ return fscope->simple_name;
+}
+
+// leaves class object on stack
+// returns class name
+STATIC qstr compile_classdef_helper(compiler_t *comp, const byte *p, uint emit_options) {
+ mp_int_t scope_idx;
+ p = pt_get_small_int(p, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this class
+ scope_new_and_link(comp, scope_idx, SCOPE_CLASS, p, emit_options);
+ }
+
+ EMIT(load_build_class);
+
+ // scope for this class
+ scope_t *cscope = comp->scopes[scope_idx];
+
+ // compile the class
+ close_over_variables_etc(comp, cscope, 0, 0);
+
+ // get its name
+ EMIT_ARG(load_const_str, cscope->simple_name);
+
+ // second node has parent classes, if any
+ // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
+ const byte *p_parents = pt_next(p);
+ if (pt_is_rule(p_parents, PN_classdef_2)) {
+ p_parents = NULL;
+ }
+ comp->func_arg_is_super = false;
+ compile_trailer_paren_helper(comp, p_parents, false, 2);
+
+ // return its name (the 'C' in class C(...):")
+ return cscope->simple_name;
+}
+
+// returns true if it was a built-in decorator (even if the built-in had an error)
+STATIC bool compile_built_in_decorator(compiler_t *comp, const byte *p, const byte *ptop, uint *emit_options) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ if (qst != MP_QSTR_micropython) {
+ return false;
+ }
+
+ if (p >= ptop || pt_next(p) != ptop) {
+ compile_syntax_error(comp, NULL, "invalid micropython decorator");
+ return true;
+ }
+
+ qstr attr;
+ p = pt_extract_id(p, &attr);
+ if (attr == MP_QSTR_bytecode) {
+ *emit_options = MP_EMIT_OPT_BYTECODE;
+#if MICROPY_EMIT_NATIVE
+ } else if (attr == MP_QSTR_native) {
+ *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
+ } else if (attr == MP_QSTR_viper) {
+ *emit_options = MP_EMIT_OPT_VIPER;
+#endif
+#if MICROPY_EMIT_INLINE_THUMB
+ } else if (attr == MP_QSTR_asm_thumb) {
+ *emit_options = MP_EMIT_OPT_ASM_THUMB;
+#endif
+ } else {
+ compile_syntax_error(comp, NULL, "invalid micropython decorator");
+ }
+
+ return true;
+}
+
+STATIC void compile_decorated(compiler_t *comp, const byte *p, const byte *ptop) {
+ // get the list of decorators
+ ptop = mp_parse_node_extract_list(&p, PN_decorators);
+
+ // inherit emit options for this function/class definition
+ uint emit_options = comp->scope_cur->emit_options;
+
+ // compile each decorator
+ int num_non_built_in_decorators = 0;
+ while (p != ptop) {
+ assert(pt_is_rule(p, PN_decorator)); // should be
+
+ const byte *ptop_decorator;
+ p = pt_rule_extract_top(p, &ptop_decorator);
+
+ // first node contains the decorator function, which is a dotted name
+ const byte *ptop_dotted_name = mp_parse_node_extract_list(&p, PN_dotted_name);
+
+ // check for built-in decorators
+ if (compile_built_in_decorator(comp, p, ptop_dotted_name, &emit_options)) {
+ // this was a built-in
+
+ } else {
+ // not a built-in, compile normally
+
+ num_non_built_in_decorators += 1;
+
+ // compile the decorator function
+ p = compile_node(comp, p);
+ while (p != ptop_dotted_name) {
+ assert(pt_is_any_id(p)); // should be
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ EMIT_ARG(load_attr, qst);
+ }
+
+ // nodes[1] contains arguments to the decorator function, if any
+ if (!pt_is_null_with_top(p, ptop_decorator)) {
+ // call the decorator function with the arguments in nodes[1]
+ comp->func_arg_is_super = false;
+ compile_node(comp, p);
+ }
+ }
+
+ p = ptop_decorator;
+ }
+
+ // compile the body (funcdef or classdef) and get its name
+ qstr body_name = 0;
+ p = pt_rule_first(ptop); // skip the rule header
+ if (pt_is_rule(ptop, PN_funcdef)) {
+ body_name = compile_funcdef_helper(comp, p, emit_options);
+ } else {
+ assert(pt_is_rule(ptop, PN_classdef)); // should be
+ body_name = compile_classdef_helper(comp, p, emit_options);
+ }
+
+ // call each decorator
+ while (num_non_built_in_decorators-- > 0) {
+ EMIT_ARG(call_function, 1, 0, 0);
+ }
+
+ // store func/class object into name
+ compile_store_id(comp, body_name);
+}
+
+STATIC void compile_funcdef(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ qstr fname = compile_funcdef_helper(comp, p, comp->scope_cur->emit_options);
+ // store function object into function name
+ compile_store_id(comp, fname);
+}
+
+STATIC void c_del_stmt(compiler_t *comp, const byte *p) {
+ if (pt_is_any_id(p)) {
+ qstr id;
+ pt_extract_id(p, &id);
+ compile_delete_id(comp, id);
+ } else if (pt_is_rule(p, PN_power)) {
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+
+ const byte *p1 = compile_node(comp, p0); // base of the power node
+
+ if (pt_is_rule(p1, PN_power_trailers)) {
+ const byte *p1top;
+ p1 = pt_rule_extract_top(p1, &p1top);
+ for (;;) {
+ const byte *p1next = pt_next(p1);
+ if (p1next == p1top) {
+ break;
+ }
+ compile_node(comp, p1);
+ p1 = p1next;
+ }
+ // p1 now points to final trailer for delete
+ }
+
+ const byte *p2;
+ if (pt_is_rule(p1, PN_trailer_bracket)) {
+ p2 = compile_node(comp, pt_rule_first(p1));
+ EMIT(delete_subscr);
+ } else if (pt_is_rule(p1, PN_trailer_period)) {
+ qstr id;
+ p2 = pt_extract_id(pt_rule_first(p1), &id);
+ EMIT_ARG(delete_attr, id);
+ } else {
+ goto cannot_delete;
+ }
+
+ if (!pt_is_null_with_top(p2, ptop)) {
+ goto cannot_delete;
+ }
+ } else if (pt_is_rule(p, PN_atom_paren)) {
+ if (pt_is_rule_empty(p)) {
+ goto cannot_delete;
+ } else {
+ p = pt_rule_first(p);
+ assert(pt_is_rule(p, PN_testlist_comp));
+ // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
+ // or, simplify the logic here my making the parser simplify everything to a list
+ const byte *p0 = pt_rule_first(p);
+ c_del_stmt(comp, p0);
+
+ const byte *p1 = pt_next(p0);
+ if (pt_is_rule(p1, PN_testlist_comp_3b)) {
+ // sequence of one item, with trailing comma
+ assert(pt_is_rule_empty(p1));
+ } else if (pt_is_rule(p1, PN_testlist_comp_3c)) {
+ // sequence of many items
+ const byte *ptop;
+ p1 = pt_rule_extract_top(p1, &ptop);
+ while (p1 != ptop) {
+ c_del_stmt(comp, p1);
+ p1 = pt_next(p1);
+ }
+ } else if (pt_is_rule(p1, PN_comp_for)) {
+ // TODO not implemented; can't del comprehension? can we get here?
+ goto cannot_delete;
+ } else {
+ // sequence with 2 items
+ c_del_stmt(comp, p1);
+ }
+ }
+ } else {
+ // some arbitrary statment that we can't delete (eg del 1)
+ goto cannot_delete;
+ }
+
+ return;
+
+cannot_delete:
+ compile_syntax_error(comp, p, "can't delete expression");
+}
+
+STATIC void compile_del_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ apply_to_single_or_list(comp, p, PN_exprlist, c_del_stmt);
+}
+
+STATIC void compile_break_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ if (comp->break_label == 0) {
+ compile_syntax_error(comp, p, "'break' outside loop");
+ }
+ assert(comp->cur_except_level >= comp->break_continue_except_level);
+ EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
+}
+
+STATIC void compile_continue_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ if (comp->continue_label == 0) {
+ compile_syntax_error(comp, p, "'continue' outside loop");
+ }
+ assert(comp->cur_except_level >= comp->break_continue_except_level);
+ EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
+}
+
+STATIC void compile_return_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->scope_cur->kind != SCOPE_FUNCTION) {
+ compile_syntax_error(comp, NULL, "'return' outside function");
+ return;
+ }
+ if (pt_is_null_with_top(p, ptop)) {
+ // no argument to 'return', so return None
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ #if 0
+ // TODO do we need this optimisation? i guess it's hardly used
+ } else if (pt_is_rule(p, PN_test_if_expr)) {
+ // special case when returning an if-expression; to match CPython optimisation
+ mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
+ mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];
+
+ uint l_fail = comp_next_label(comp);
+ c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
+ compile_node(comp, pns_test_if_expr->nodes[0]); // success value
+ EMIT(return_value);
+ EMIT_ARG(label_assign, l_fail);
+ compile_node(comp, pns_test_if_else->nodes[1]); // failure value
+ #endif
+ } else {
+ compile_node(comp, p);
+ }
+ EMIT(return_value);
+}
+
+STATIC void compile_yield_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_node(comp, p);
+ EMIT(pop_top);
+}
+
+STATIC void compile_raise_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // raise
+ EMIT_ARG(raise_varargs, 0);
+ } else if (pt_is_rule(p, PN_raise_stmt_arg)) {
+ // raise x from y
+ p = pt_rule_first(p);
+ p = compile_node(comp, p);
+ compile_node(comp, p);
+ EMIT_ARG(raise_varargs, 2);
+ } else {
+ // raise x
+ compile_node(comp, p);
+ EMIT_ARG(raise_varargs, 1);
+ }
+}
+
+// q_base holds the base of the name
+// eg a -> q_base=a
+// a.b.c -> q_base=a
+STATIC void do_import_name(compiler_t *comp, const byte *p, qstr *q_base) {
+ bool is_as = false;
+ if (p != NULL && pt_is_rule(p, PN_dotted_as_name)) {
+ // a name of the form x as y; unwrap it
+ p = pt_rule_first(p); // point to 'x'
+ pt_extract_id(pt_next(p), q_base); // extract 'y'
+ is_as = true;
+ }
+ if (p == NULL || pt_is_null(p)) {
+ // empty name (eg, from . import x)
+ *q_base = MP_QSTR_;
+ EMIT_ARG(import_name, MP_QSTR_); // import the empty string
+ } else if (pt_is_any_id(p)) {
+ // just a simple name
+ qstr q_full;
+ pt_extract_id(p, &q_full);
+ if (!is_as) {
+ *q_base = q_full;
+ }
+ EMIT_ARG(import_name, q_full);
+ } else {
+ // a name of the form a.b.c
+ assert(pt_is_rule(p, PN_dotted_name)); // should be
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+
+ if (!is_as) {
+ pt_extract_id(p, q_base);
+ }
+
+ // work out string length
+ int len = -1;
+ for (const byte *p2 = p; p2 != ptop;) {
+ qstr qst;
+ p2 = pt_extract_id(p2, &qst);
+ len += 1 + qstr_len(qst);
+ }
+
+ // build string
+ byte *q_ptr;
+ byte *str_dest = qstr_build_start(len, &q_ptr);
+ for (const byte *p2 = p; p2 != ptop;) {
+ if (p2 > p) {
+ *str_dest++ = '.';
+ }
+ qstr qst;
+ p2 = pt_extract_id(p2, &qst);
+ size_t str_src_len;
+ const byte *str_src = qstr_data(qst, &str_src_len);
+ memcpy(str_dest, str_src, str_src_len);
+ str_dest += str_src_len;
+ }
+ qstr q_full = qstr_build_end(q_ptr);
+ EMIT_ARG(import_name, q_full);
+ if (is_as) {
+ for (const byte *p2 = pt_next(p); p2 != ptop;) {
+ qstr qst;
+ p2 = pt_extract_id(p2, &qst);
+ EMIT_ARG(load_attr, qst);
+ }
+ }
+ }
+}
+
+STATIC void compile_dotted_as_name(compiler_t *comp, const byte *p) {
+ EMIT_ARG(load_const_small_int, 0); // level 0 import
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
+ qstr q_base;
+ do_import_name(comp, p, &q_base);
+ compile_store_id(comp, q_base);
+}
+
+STATIC void compile_import_name(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ apply_to_single_or_list(comp, p, PN_dotted_as_names, compile_dotted_as_name);
+}
+
+STATIC void compile_import_from(compiler_t *comp, const byte *p, const byte *ptop) {
+ const byte *p_import_source = p;
+
+ // extract the preceeding .'s (if any) for a relative import, to compute the import level
+ uint import_level = 0;
+ do {
+ const byte *p_rel;
+ if (pt_is_any_tok(p_import_source) || pt_is_rule(p_import_source, PN_one_or_more_period_or_ellipsis)) {
+ // This covers relative imports with dots only like "from .. import"
+ p_rel = p_import_source;
+ p_import_source = NULL;
+ } else if (pt_is_rule(p_import_source, PN_import_from_2b)) {
+ // This covers relative imports starting with dot(s) like "from .foo import"
+ p_rel = pt_rule_first(p_import_source);
+ p_import_source = pt_next(p_rel);
+ } else {
+ // Not a relative import
+ break;
+ }
+
+ // get the list of . and/or ...'s
+ const byte *p_rel_top = mp_parse_node_extract_list(&p_rel, PN_one_or_more_period_or_ellipsis);
+
+ // count the total number of .'s
+ while (p_rel != p_rel_top) {
+ if (pt_is_tok(p_rel, MP_TOKEN_DEL_PERIOD)) {
+ import_level++;
+ } else {
+ // should be an MP_TOKEN_ELLIPSIS
+ import_level += 3;
+ }
+ p_rel = pt_next(p_rel);
+ }
+ } while (0);
+
+ p = pt_next(p);
+
+ if (pt_is_tok(p, MP_TOKEN_OP_STAR)) {
+ EMIT_ARG(load_const_small_int, import_level);
+
+ // build the "fromlist" tuple
+ EMIT_ARG(load_const_str, MP_QSTR__star_);
+ EMIT_ARG(build_tuple, 1);
+
+ // do the import
+ qstr dummy_q;
+ do_import_name(comp, p_import_source, &dummy_q);
+ EMIT(import_star);
+
+ } else {
+ EMIT_ARG(load_const_small_int, import_level);
+
+ // build the "fromlist" tuple
+ ptop = mp_parse_node_extract_list(&p, PN_import_as_names);
+ uint n = 0;
+ for (const byte *p_list = p; p_list < ptop; p_list = pt_next(p_list), ++n) {
+ assert(pt_is_rule(p_list, PN_import_as_name));
+ qstr id2;
+ pt_extract_id(pt_rule_first(p_list), &id2);
+ EMIT_ARG(load_const_str, id2);
+ }
+ EMIT_ARG(build_tuple, n);
+
+ // do the import
+ qstr dummy_q;
+ do_import_name(comp, p_import_source, &dummy_q);
+ for (const byte *p_list = p; p_list < ptop;) {
+ assert(pt_is_rule(p_list, PN_import_as_name));
+ const byte *p_list_top;
+ p_list = pt_rule_extract_top(p_list, &p_list_top);
+ qstr id2;
+ p_list = pt_extract_id(p_list, &id2);
+ EMIT_ARG(import_from, id2);
+ if (p_list == p_list_top) {
+ compile_store_id(comp, id2);
+ } else {
+ qstr id3;
+ p_list = pt_extract_id(p_list, &id3);
+ compile_store_id(comp, id3);
+ }
+ }
+ EMIT(pop_top);
+ }
+}
+
+STATIC void compile_declare_global(compiler_t *comp, const byte *p_for_err, qstr qst) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
+ if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
+ compile_syntax_error(comp, p_for_err, "identifier redefined as global");
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+
+ // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
+ id_info = scope_find_global(comp->scope_cur, qst);
+ if (id_info != NULL) {
+ id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+ }
+}
+
+STATIC void compile_global_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ const byte *p_orig = p;
+ ptop = mp_parse_node_extract_list(&p, PN_name_list);
+ while (p != ptop) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ compile_declare_global(comp, p_orig, qst);
+ }
+ }
+}
+
+STATIC void compile_declare_nonlocal(compiler_t *comp, const byte *p_for_err, qstr qst) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
+ if (!added && id_info->kind != ID_INFO_KIND_FREE) {
+ compile_syntax_error(comp, p_for_err, "identifier redefined as nonlocal");
+ return;
+ }
+ id_info_t *id_info2 = scope_find_local_in_parent(comp->scope_cur, qst);
+ if (id_info2 == NULL || !(id_info2->kind == ID_INFO_KIND_LOCAL
+ || id_info2->kind == ID_INFO_KIND_CELL || id_info2->kind == ID_INFO_KIND_FREE)) {
+ compile_syntax_error(comp, p_for_err, "no binding for nonlocal found");
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_FREE;
+ scope_close_over_in_parents(comp->scope_cur, qst);
+}
+
+STATIC void compile_nonlocal_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ if (comp->scope_cur->kind == SCOPE_MODULE) {
+ compile_syntax_error(comp, p, "can't declare nonlocal in outer code");
+ return;
+ }
+ const byte *p_orig = p;
+ ptop = mp_parse_node_extract_list(&p, PN_name_list);
+ while (p != ptop) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ compile_declare_nonlocal(comp, p_orig, qst);
+ }
+ }
+}
+
+STATIC void compile_assert_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ uint l_end = comp_next_label(comp);
+ p = c_if_cond(comp, p, true, l_end);
+ EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
+ if (!pt_is_null_with_top(p, ptop)) {
+ // assertion message
+ compile_node(comp, p);
+ EMIT_ARG(call_function, 1, 0, 0);
+ }
+ EMIT_ARG(raise_varargs, 1);
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_if_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ // TODO proper and/or short circuiting
+
+ uint l_end = comp_next_label(comp);
+
+ // optimisation: don't emit anything when "if False"
+ if (node_is_const_false(p)) {
+ p = pt_next(p); // skip if condition
+ p = pt_next(p); // skip if block
+ } else {
+ uint l_fail = comp_next_label(comp);
+ bool if_true = node_is_const_true(p);
+ p = c_if_cond(comp, p, false, l_fail); // if condition
+
+ p = compile_node(comp, p); // if block
+
+ // optimisation: skip everything else when "if True"
+ if (if_true) {
+ goto done;
+ }
+
+ if (
+ // optimisation: don't jump over non-existent elif/else blocks
+ !(pt_is_null_with_top(p, ptop) && pt_is_null_with_top(pt_next(p), ptop))
+ // optimisation: don't jump if last instruction was return
+ && !EMIT(last_emit_was_return_value)
+ ) {
+ // jump over elif/else blocks
+ EMIT_ARG(jump, l_end);
+ }
+
+ EMIT_ARG(label_assign, l_fail);
+ }
+
+ // at this point p points to elif node (which may not exist)
+
+ // compile elif blocks (if any)
+ if (p != ptop) {
+ const byte *p_else_top = mp_parse_node_extract_list(&p, PN_if_stmt_elif_list);
+ while (p != p_else_top) {
+ assert(pt_is_rule(p, PN_if_stmt_elif)); // should be
+ p = pt_rule_first(p);
+
+ // optimisation: don't emit anything when "if False"
+ if (node_is_const_false(p)) {
+ p = pt_next(p); // skip elif condition
+ p = pt_next(p); // skip elif block
+ } else {
+ uint l_fail = comp_next_label(comp);
+ bool elif_true = node_is_const_true(p);
+ p = c_if_cond(comp, p, false, l_fail); // elif condition
+
+ p = compile_node(comp, p); // elif block
+
+ // optimisation: skip everything else when "elif True"
+ if (elif_true) {
+ goto done;
+ }
+
+ // optimisation: don't jump if last instruction was return
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(jump, l_end);
+ }
+ EMIT_ARG(label_assign, l_fail);
+ }
+ }
+
+ // compile else block (if any)
+ if (p != ptop) {
+ compile_node(comp, p);
+ }
+ }
+
+done:
+ EMIT_ARG(label_assign, l_end);
+}
+
+#define START_BREAK_CONTINUE_BLOCK \
+ uint16_t old_break_label = comp->break_label; \
+ uint16_t old_continue_label = comp->continue_label; \
+ uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
+ uint break_label = comp_next_label(comp); \
+ uint continue_label = comp_next_label(comp); \
+ comp->break_label = break_label; \
+ comp->continue_label = continue_label; \
+ comp->break_continue_except_level = comp->cur_except_level;
+
+#define END_BREAK_CONTINUE_BLOCK \
+ comp->break_label = old_break_label; \
+ comp->continue_label = old_continue_label; \
+ comp->break_continue_except_level = old_break_continue_except_level;
+
+STATIC void compile_while_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ START_BREAK_CONTINUE_BLOCK
+
+ const byte *p_body = pt_next(p);
+ const byte *p_else = pt_next(p_body);
+
+ if (!node_is_const_false(p)) { // optimisation: don't emit anything for "while False"
+ uint top_label = comp_next_label(comp);
+ if (!node_is_const_true(p)) { // optimisation: don't jump to cond for "while True"
+ EMIT_ARG(jump, continue_label);
+ }
+ EMIT_ARG(label_assign, top_label);
+ compile_node(comp, p_body); // body
+ EMIT_ARG(label_assign, continue_label);
+ c_if_cond(comp, p, true, top_label); // condition
+ }
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ if (p_else != ptop) {
+ compile_node(comp, p_else); // else
+ }
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+// This function compiles an optimised for-loop of the form:
+// for <var> in range(<start>, <end>, <step>):
+// <body>
+// else:
+// <else>
+// <var> must be an identifier and <step> must be a small-int.
+//
+// Semantics of for-loop require:
+// - final failing value should not be stored in the loop variable
+// - if the loop never runs, the loop variable should never be assigned
+// - assignments to <var>, <end> or <step> in the body do not alter the loop
+// (<step> is a constant for us, so no need to worry about it changing)
+//
+// If <end> is a small-int, then the stack during the for-loop contains just
+// the current value of <var>. Otherwise, the stack contains <end> then the
+// current value of <var>.
+STATIC void compile_for_stmt_optimised_range(compiler_t *comp, const byte *pn_var,
+ const byte *pn_start, const byte *pn_end, mp_int_t step,
+ const byte *pn_body, const byte *pn_else) {
+
+ START_BREAK_CONTINUE_BLOCK
+
+ uint top_label = comp_next_label(comp);
+ uint entry_label = comp_next_label(comp);
+
+ // put the end value on the stack if it's not a small-int constant
+ bool end_on_stack = !pt_is_small_int(pn_end);
+ if (end_on_stack) {
+ compile_node(comp, pn_end);
+ }
+
+ // compile: start
+ compile_node(comp, pn_start);
+
+ EMIT_ARG(jump, entry_label);
+ EMIT_ARG(label_assign, top_label);
+
+ // duplicate next value and store it to var
+ EMIT(dup_top);
+ c_assign(comp, pn_var, ASSIGN_STORE);
+
+ // compile body
+ compile_node(comp, pn_body);
+
+ EMIT_ARG(label_assign, continue_label);
+
+ // compile: var + step
+ EMIT_ARG(load_const_small_int, step);
+ EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
+
+ EMIT_ARG(label_assign, entry_label);
+
+ // compile: if var <cond> end: goto top
+ if (end_on_stack) {
+ EMIT(dup_top_two);
+ EMIT(rot_two);
+ } else {
+ EMIT(dup_top);
+ compile_node(comp, pn_end);
+ }
+ if (step >= 0) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
+ } else {
+ EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
+ }
+ EMIT_ARG(pop_jump_if, true, top_label);
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ if (pn_else != NULL) {
+ compile_node(comp, pn_else);
+ }
+
+ EMIT_ARG(label_assign, break_label);
+
+ // discard final value of var that failed the loop condition
+ EMIT(pop_top);
+
+ // discard <end> value if it's on the stack
+ if (end_on_stack) {
+ EMIT(pop_top);
+ }
+}
+
+STATIC void compile_for_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
+ // this is actually slower, but uses no heap memory
+ // for viper it will be much, much faster
+ if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ pt_is_any_id(p)
+ && pt_is_rule(pt_next(p), PN_power)) {
+ const byte *p_it_top;
+ const byte *p_it0 = pt_rule_extract_top(pt_next(p), &p_it_top);
+ if (!pt_is_id(p_it0, MP_QSTR_range)) {
+ goto optimise_fail;
+ }
+ const byte *p_it1 = pt_next(p_it0);
+ if (pt_is_rule(p_it1, PN_trailer_paren)
+ && !pt_is_rule_empty(p_it1)
+ && pt_next(p_it1) == p_it_top) {
+ // iterator is of the form range(...) with at least 1 arg
+ const byte *p_range_args = pt_rule_first(p_it1);
+ const byte *p_range_args_top = mp_parse_node_extract_list(&p_range_args, PN_arglist);
+ const byte *p_start = pt_const_int0;
+ const byte *p_end = p_range_args;
+ mp_int_t step = 1;
+ p_range_args = pt_next(p_range_args);
+ if (p_range_args != p_range_args_top) {
+ // range has at least 2 args
+ p_start = p_end;
+ p_end = p_range_args;
+ p_range_args = pt_next(p_range_args);
+ if (p_range_args != p_range_args_top) {
+ // range has at least 3 args
+ // We need to know sign of step. This is possible only if it's constant
+ if (!pt_is_small_int(p_range_args)) {
+ goto optimise_fail;
+ }
+ p_range_args = pt_get_small_int(p_range_args, &step);
+ if (p_range_args != p_range_args_top) {
+ // range has at least 4 args, so don't know how to optimise it
+ goto optimise_fail;
+ }
+ }
+ }
+ // arguments must be able to be compiled as standard expressions
+ if (pt_is_any_rule(p_start)) {
+ int k = pt_rule_extract_rule_id(p_start);
+ if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
+ goto optimise_fail;
+ }
+ }
+ if (pt_is_any_rule(p_end)) {
+ int k = pt_rule_extract_rule_id(p_end);
+ if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
+ goto optimise_fail;
+ }
+ }
+ // can optimise
+ const byte *p_body = p_it_top;
+ const byte *p_else = pt_next(p_body);
+ if (p_else == ptop) {
+ p_else = NULL;
+ }
+ compile_for_stmt_optimised_range(comp, p, p_start, p_end, step, p_body, p_else);
+ return;
+ }
+ }
+optimise_fail:;
+
+ START_BREAK_CONTINUE_BLOCK
+ comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
+
+ uint pop_label = comp_next_label(comp);
+
+ const byte *p_it = pt_next(p);
+ const byte *p_body = compile_node(comp, p_it); // iterator
+ EMIT(get_iter);
+ EMIT_ARG(label_assign, continue_label);
+ EMIT_ARG(for_iter, pop_label);
+ c_assign(comp, p, ASSIGN_STORE); // variable
+ const byte *p_else = compile_node(comp, p_body); // body
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(jump, continue_label);
+ }
+ EMIT_ARG(label_assign, pop_label);
+ EMIT(for_iter_end);
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ if (p_else != ptop) {
+ compile_node(comp, p_else); // else
+ }
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+STATIC void compile_try_except(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else) {
+ // setup code
+ uint l1 = comp_next_label(comp);
+ uint success_label = comp_next_label(comp);
+
+ EMIT_ARG(setup_except, l1);
+ compile_increase_except_level(comp);
+
+ compile_node(comp, p_body); // body
+ EMIT(pop_block);
+ EMIT_ARG(jump, success_label); // jump over exception handler
+
+ EMIT_ARG(label_assign, l1); // start of exception handler
+ EMIT(start_except_handler);
+
+ uint l2 = comp_next_label(comp);
+
+ while (p_except != p_except_top) {
+ assert(pt_is_rule(p_except, PN_try_stmt_except)); // should be
+ p_except = pt_rule_first(p_except);
+
+ qstr qstr_exception_local = 0;
+ uint end_finally_label = comp_next_label(comp);
+
+ if (pt_is_null(p_except)) {
+ // this is a catch all exception handler
+ if (pt_next(pt_next(p_except)) != p_except_top) {
+ compile_syntax_error(comp, p_except, "default 'except:' must be last");
+ compile_decrease_except_level(comp);
+ return;
+ }
+ } else {
+ // this exception handler requires a match to a certain type of exception
+ const byte *p_exception_expr = p_except;
+ if (pt_is_rule(p_exception_expr, PN_try_stmt_as_name)) {
+ // handler binds the exception to a local
+ p_exception_expr = pt_rule_first(p_exception_expr);
+ pt_extract_id(pt_next(p_exception_expr), &qstr_exception_local);
+ }
+ EMIT(dup_top);
+ compile_node(comp, p_exception_expr);
+ EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
+ EMIT_ARG(pop_jump_if, false, end_finally_label);
+ }
+
+ p_except = pt_next(p_except);
+
+ EMIT(pop_top);
+
+ if (qstr_exception_local == 0) {
+ EMIT(pop_top);
+ } else {
+ compile_store_id(comp, qstr_exception_local);
+ }
+
+ EMIT(pop_top);
+
+ uint l3 = 0;
+ if (qstr_exception_local != 0) {
+ l3 = comp_next_label(comp);
+ EMIT_ARG(setup_finally, l3);
+ compile_increase_except_level(comp);
+ }
+ p_except = compile_node(comp, p_except);
+ if (qstr_exception_local != 0) {
+ EMIT(pop_block);
+ }
+ EMIT(pop_except);
+ if (qstr_exception_local != 0) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l3);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ compile_store_id(comp, qstr_exception_local);
+ compile_delete_id(comp, qstr_exception_local);
+
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+ }
+ EMIT_ARG(jump, l2);
+ EMIT_ARG(label_assign, end_finally_label);
+ EMIT_ARG(adjust_stack_size, 3); // stack adjust for the 3 exception items
+ }
+
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+ EMIT(end_except_handler);
+
+ EMIT_ARG(label_assign, success_label);
+ if (p_else != NULL) {
+ compile_node(comp, p_else); // else block
+ }
+ EMIT_ARG(label_assign, l2);
+}
+
+STATIC void compile_try_finally(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else, const byte *p_finally) {
+ assert(pt_is_rule(p_finally, PN_try_stmt_finally));
+
+ uint l_finally_block = comp_next_label(comp);
+
+ EMIT_ARG(setup_finally, l_finally_block);
+ compile_increase_except_level(comp);
+
+ if (p_except == NULL) {
+ assert(p_else == NULL);
+ EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
+ compile_node(comp, p_body);
+ EMIT_ARG(adjust_stack_size, -3);
+ } else {
+ compile_try_except(comp, p_body, p_except, p_except_top, p_else);
+ }
+ EMIT(pop_block);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l_finally_block);
+ compile_node(comp, pt_rule_first(p_finally));
+
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+}
+
+STATIC void compile_try_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ const byte* p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_try_stmt_except) || pt_is_rule(p1, PN_try_stmt_except_list)) {
+ // just try-except
+ const byte *p1_top = mp_parse_node_extract_list(&p1, PN_try_stmt_except_list);
+ compile_try_except(comp, p, p1, p1_top, NULL);
+ } else if (pt_is_rule(p1, PN_try_stmt_except_and_more)) {
+ // try-except and possibly else and/or finally
+ const byte *p1_top;
+ const byte *p1_p0 = pt_rule_extract_top(p1, &p1_top);
+ const byte *p1_p1 = mp_parse_node_extract_list(&p1_p0, PN_try_stmt_except_list);
+ if (pt_next(p1_p1) == p1_top) {
+ // no finally, but have else
+ compile_try_except(comp, p, p1_p0, p1_p1, p1_p1);
+ } else {
+ // have finally, may or may not have else
+ compile_try_finally(comp, p, p1_p0, p1_p1, p1_p1, pt_next(p1_p1));
+ }
+ } else {
+ // just try-finally
+ compile_try_finally(comp, p, NULL, NULL, NULL, p1);
+ }
+}
+
+STATIC void compile_with_stmt_helper(compiler_t *comp, const byte *n_pre, const byte *p_body) {
+ if (n_pre >= p_body) {
+ // no more pre-bits, compile the body of the with
+ compile_node(comp, p_body);
+ } else {
+ uint l_end = comp_next_label(comp);
+ if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
+ // we need to allocate an extra label for the native emitter
+ // it will use l_end+1 as an auxiliary label
+ comp_next_label(comp);
+ }
+ if (pt_is_rule(n_pre, PN_with_item)) {
+ // this pre-bit is of the form "a as b"
+ const byte *p = pt_rule_first(n_pre);
+ p = compile_node(comp, p);
+ EMIT_ARG(setup_with, l_end);
+ c_assign(comp, p, ASSIGN_STORE);
+ n_pre = pt_next(n_pre);
+ } else {
+ // this pre-bit is just an expression
+ n_pre = compile_node(comp, n_pre);
+ EMIT_ARG(setup_with, l_end);
+ EMIT(pop_top);
+ }
+ compile_increase_except_level(comp);
+ // compile additional pre-bits and the body
+ compile_with_stmt_helper(comp, n_pre, p_body);
+ // finish this with block
+ EMIT_ARG(with_cleanup, l_end);
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+ }
+}
+
+STATIC void compile_with_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
+ ptop = mp_parse_node_extract_list(&p, PN_with_stmt_list);
+
+ // compile in a nested fashion
+ compile_with_stmt_helper(comp, p, ptop);
+}
+
+STATIC void compile_expr_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ const byte *p_n1 = pt_next(p);
+
+ if (pt_is_null_with_top(p_n1, ptop)) {
+ if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
+ // for REPL, evaluate then print the expression
+ compile_load_id(comp, MP_QSTR___repl_print__);
+ compile_node(comp, p);
+ EMIT_ARG(call_function, 1, 0, 0);
+ EMIT(pop_top);
+
+ } else {
+ #if 0
+ // for non-REPL, evaluate then discard the expression
+ if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
+ // do nothing with a lonely constant
+ } else
+ #endif
+ {
+ compile_node(comp, p); // just an expression
+ EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
+ }
+ }
+ } else if (pt_is_rule(p_n1, PN_expr_stmt_augassign)) {
+ c_assign(comp, p, ASSIGN_AUG_LOAD); // lhs load for aug assign
+ p_n1 = pt_rule_first(p_n1);
+ assert(pt_is_any_tok(p_n1));
+ byte tok;
+ p_n1 = pt_tok_extract(p_n1, &tok);
+ mp_binary_op_t op;
+ switch (tok) {
+ case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
+ case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
+ case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
+ case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
+ case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
+ case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
+ case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
+ case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
+ case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
+ case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
+ case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
+ case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
+ }
+ compile_node(comp, p_n1); // rhs
+ EMIT_ARG(binary_op, op);
+ c_assign(comp, p, ASSIGN_AUG_STORE); // lhs store for aug assign
+ } else if (pt_is_rule(p_n1, PN_expr_stmt_assign_list)) {
+ const byte *p_n1_top;
+ p_n1 = pt_rule_extract_top(p_n1, &p_n1_top);
+ const byte *p_rhs = NULL;
+ for (const byte *pp = p_n1; pp != p_n1_top; pp = pt_next(pp)) {
+ p_rhs = pp;
+ }
+ compile_node(comp, p_rhs); // rhs
+ // following CPython, we store left-most first
+ //if (num rhs > 1) { always true?
+ EMIT(dup_top);
+ //}
+ c_assign(comp, p, ASSIGN_STORE); // lhs store
+ for (const byte *pp = p_n1; pp != p_rhs;) {
+ const byte *pp_next = pt_next(pp);
+ if (pp_next != p_rhs) {
+ EMIT(dup_top);
+ }
+ c_assign(comp, pp, ASSIGN_STORE); // middle store
+ pp = pp_next;
+ }
+ } else {
+ // single assignment
+ #if 0
+ if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) {
+ // optimisation for a, b = c, d
+ mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) {
+ // can't optimise when it's a star expression on the lhs
+ goto no_optimisation;
+ }
+ compile_node(comp, pns10->nodes[0]); // rhs
+ compile_node(comp, pns10->nodes[1]); // rhs
+ EMIT(rot_two);
+ c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
+ } else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) {
+ // optimisation for a, b, c = d, e, f
+ mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) {
+ // can't optimise when it's a star expression on the lhs
+ goto no_optimisation;
+ }
+ compile_node(comp, pns10->nodes[0]); // rhs
+ compile_node(comp, pns10->nodes[1]); // rhs
+ compile_node(comp, pns10->nodes[2]); // rhs
+ EMIT(rot_three);
+ EMIT(rot_two);
+ c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
+ } else
+ #endif
+ {
+ //no_optimisation:
+ compile_node(comp, p_n1); // rhs
+ c_assign(comp, p, ASSIGN_STORE); // lhs store
+ }
+ }
+}
+
+STATIC void compile_test_if_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ const byte *p_test_if_else = pt_next(p);
+ assert(p_test_if_else != ptop && pt_is_rule(p_test_if_else, PN_test_if_else));
+ p_test_if_else = pt_rule_first(p_test_if_else);
+
+ uint l_fail = comp_next_label(comp);
+ uint l_end = comp_next_label(comp);
+ p_test_if_else = c_if_cond(comp, p_test_if_else, false, l_fail); // condition
+ compile_node(comp, p); // success value
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(label_assign, l_fail);
+ EMIT_ARG(adjust_stack_size, -1); // adjust stack size
+ compile_node(comp, p_test_if_else); // failure value
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_lambdef(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ mp_int_t scope_idx;
+ p = pt_get_small_int(p, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this lambda
+ scope_new_and_link(comp, scope_idx, SCOPE_LAMBDA, p, comp->scope_cur->emit_options);
+ }
+
+ // get the scope for this lambda
+ scope_t *this_scope = comp->scopes[scope_idx];
+
+ // compile the lambda definition
+ compile_funcdef_lambdef(comp, this_scope, p, PN_varargslist);
+}
+
+STATIC void compile_or_and_test(compiler_t *comp, const byte *p, const byte *ptop, bool cond) {
+ uint l_end = comp_next_label(comp);
+ while (p != ptop) {
+ p = compile_node(comp, p);
+ if (p != ptop) {
+ EMIT_ARG(jump_if_or_pop, cond, l_end);
+ }
+ }
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_or_test(compiler_t *comp, const byte *p, const byte *ptop) {
+ compile_or_and_test(comp, p, ptop, true);
+}
+
+STATIC void compile_and_test(compiler_t *comp, const byte *p, const byte *ptop) {
+ compile_or_and_test(comp, p, ptop, false);
+}
+
+STATIC void compile_not_test_2(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_node(comp, p);
+ EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
+}
+
+STATIC void compile_comparison(compiler_t *comp, const byte *p, const byte *ptop) {
+ int num_nodes = pt_num_nodes(p, ptop);
+ p = compile_node(comp, p);
+ bool multi = (num_nodes > 3);
+ uint l_fail = 0;
+ if (multi) {
+ l_fail = comp_next_label(comp);
+ }
+ for (int i = 1; i + 1 < num_nodes; i += 2) {
+ mp_binary_op_t op;
+ if (pt_is_any_tok(p)) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ switch (tok) {
+ case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
+ case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
+ case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
+ case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
+ case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
+ case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
+ case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
+ }
+ } else {
+ if (pt_is_rule(p, PN_comp_op_not_in)) {
+ op = MP_BINARY_OP_NOT_IN;
+ } else {
+ assert(pt_is_rule(p, PN_comp_op_is)); // should be
+ if (pt_is_rule_empty(p)) {
+ op = MP_BINARY_OP_IS;
+ } else {
+ op = MP_BINARY_OP_IS_NOT;
+ }
+ }
+ p = pt_next(p);
+ }
+
+ p = compile_node(comp, p);
+
+ if (i + 2 < num_nodes) {
+ EMIT(dup_top);
+ EMIT(rot_three);
+ }
+
+ EMIT_ARG(binary_op, op);
+
+ if (i + 2 < num_nodes) {
+ EMIT_ARG(jump_if_or_pop, false, l_fail);
+ }
+ }
+ if (multi) {
+ uint l_end = comp_next_label(comp);
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(label_assign, l_fail);
+ EMIT_ARG(adjust_stack_size, 1);
+ EMIT(rot_two);
+ EMIT(pop_top);
+ EMIT_ARG(label_assign, l_end);
+ }
+}
+
+STATIC void compile_star_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_syntax_error(comp, p, "*x must be assignment target");
+}
+
+STATIC void c_binary_op(compiler_t *comp, const byte *p, const byte *ptop, mp_binary_op_t binary_op) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ p = compile_node(comp, p);
+ EMIT_ARG(binary_op, binary_op);
+ }
+}
+
+STATIC void compile_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ c_binary_op(comp, p, ptop, MP_BINARY_OP_OR);
+}
+
+STATIC void compile_xor_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ c_binary_op(comp, p, ptop, MP_BINARY_OP_XOR);
+}
+
+STATIC void compile_and_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ c_binary_op(comp, p, ptop, MP_BINARY_OP_AND);
+}
+
+STATIC void compile_shift_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ p = compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_DBL_LESS) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_LSHIFT);
+ } else {
+ assert(tok == MP_TOKEN_OP_DBL_MORE); // should be
+ EMIT_ARG(binary_op, MP_BINARY_OP_RSHIFT);
+ }
+ }
+}
+
+STATIC void compile_arith_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ p = compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_ADD);
+ } else {
+ assert(tok == MP_TOKEN_OP_MINUS); // should be
+ EMIT_ARG(binary_op, MP_BINARY_OP_SUBTRACT);
+ }
+ }
+}
+
+STATIC void compile_term(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ p = compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_STAR) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_MULTIPLY);
+ } else if (tok == MP_TOKEN_OP_DBL_SLASH) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_FLOOR_DIVIDE);
+ } else if (tok == MP_TOKEN_OP_SLASH) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_TRUE_DIVIDE);
+ } else {
+ assert(tok == MP_TOKEN_OP_PERCENT); // should be
+ EMIT_ARG(binary_op, MP_BINARY_OP_MODULO);
+ }
+ }
+}
+
+STATIC void compile_factor_2(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE);
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE);
+ } else {
+ assert(tok == MP_TOKEN_OP_TILDE); // should be
+ EMIT_ARG(unary_op, MP_UNARY_OP_INVERT);
+ }
+}
+
+STATIC void compile_power(compiler_t *comp, const byte *p, const byte *ptop) {
+ // this is to handle special super() call
+ comp->func_arg_is_super = pt_is_id(p, MP_QSTR_super);
+
+ compile_generic_all_nodes(comp, p, ptop);
+
+ if (pt_num_nodes(p, ptop) == 3) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
+ }
+}
+
+// if p_arglist==NULL then there are no arguments
+STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra) {
+ // function to call is on top of stack
+
+ // this is to handle special super() call
+ if (p_arglist == NULL && comp->func_arg_is_super && comp->scope_cur->kind == SCOPE_FUNCTION) {
+ compile_load_id(comp, MP_QSTR___class__);
+ // look for first argument to function (assumes it's "self")
+ for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
+ if (comp->scope_cur->id_info[i].flags & ID_FLAG_IS_PARAM) {
+ // first argument found; load it and call super
+ EMIT_LOAD_FAST(MP_QSTR_, comp->scope_cur->id_info[i].local_num);
+ EMIT_ARG(call_function, 2, 0, 0);
+ return;
+ }
+ }
+ compile_syntax_error(comp, NULL, "super() call cannot find self"); // really a TypeError
+ return;
+ }
+
+ // get the list of arguments
+ const byte *ptop;
+ if (p_arglist == NULL) {
+ ptop = NULL;
+ } else {
+ ptop = mp_parse_node_extract_list(&p_arglist, PN_arglist);
+ }
+
+ // compile the arguments
+ // Rather than calling compile_node on the list, we go through the list of args
+ // explicitly here so that we can count the number of arguments and give sensible
+ // error messages.
+ int n_positional = n_positional_extra;
+ uint n_keyword = 0;
+ uint star_flags = 0;
+ const byte *p_star_args = NULL, *p_dblstar_args = NULL;
+ for (const byte *p = p_arglist; p != ptop;) {
+ if (pt_is_rule(p, PN_arglist_star)) {
+ if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
+ compile_syntax_error(comp, p, "can't have multiple *x");
+ return;
+ }
+ star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
+ p_star_args = pt_rule_first(p);
+ p = pt_next(p);
+ } else if (pt_is_rule(p, PN_arglist_dbl_star)) {
+ if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
+ compile_syntax_error(comp, p, "can't have multiple **x");
+ return;
+ }
+ star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
+ p_dblstar_args = pt_rule_first(p);
+ p = pt_next(p);
+ } else if (pt_is_rule(p, PN_argument)) {
+ p = pt_rule_first(p); // skip rule header
+ const byte *p2 = pt_next(p); // get second node
+ if (pt_is_rule(p2, PN_comp_for)) {
+ // list comprehension argument
+ compile_comprehension(comp, p, SCOPE_GEN_EXPR);
+ n_positional++;
+ p = pt_next(pt_next(p));
+ } else {
+ // keyword argument
+ if (!pt_is_any_id(p)) {
+ compile_syntax_error(comp, p, "LHS of keyword arg must be an id");
+ return;
+ }
+ qstr kw;
+ p = pt_extract_id(p, &kw);
+ EMIT_ARG(load_const_str, kw);
+ p = compile_node(comp, p);
+ n_keyword += 1;
+ }
+ } else {
+ if (n_keyword > 0) {
+ compile_syntax_error(comp, p, "non-keyword arg after keyword arg");
+ return;
+ }
+ p = compile_node(comp, p);
+ n_positional++;
+ }
+ }
+
+ // compile the star/double-star arguments if we had them
+ // if we had one but not the other then we load "null" as a place holder
+ if (star_flags != 0) {
+ if (p_star_args == NULL) {
+ EMIT(load_null);
+ } else {
+ compile_node(comp, p_star_args);
+ }
+ if (p_dblstar_args == NULL) {
+ EMIT(load_null);
+ } else {
+ compile_node(comp, p_dblstar_args);
+ }
+ }
+
+ // emit the function/method call
+ if (is_method_call) {
+ EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
+ } else {
+ EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
+ }
+}
+
+STATIC void compile_power_trailers(compiler_t *comp, const byte *p, const byte *ptop) {
+ while (p != ptop) {
+ const byte *p_next = pt_next(p);
+ if (p_next != ptop && pt_is_rule(p, PN_trailer_period) && pt_is_rule(p_next, PN_trailer_paren)) {
+ // optimisation for method calls a.f(...), following PyPy
+ const byte *p_period = pt_rule_first(p);
+ const byte *p_paren;
+ if (pt_is_rule_empty(p_next)) {
+ p_paren = NULL;
+ } else {
+ p_paren = pt_rule_first(p_next);
+ }
+ qstr method_name;
+ pt_extract_id(p_period, &method_name);
+ EMIT_ARG(load_method, method_name);
+ compile_trailer_paren_helper(comp, p_paren, true, 0);
+ p = pt_next(p_next);
+ } else {
+ p = compile_node(comp, p);
+ }
+ comp->func_arg_is_super = false;
+ }
+}
+
+// p needs to point to 2 successive nodes, first is lhs of comprehension, second is PN_comp_for node
+STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind) {
+ const byte *p_comp_for = pt_next(p);
+ assert(pt_is_rule(p_comp_for, PN_comp_for));
+ p_comp_for = pt_rule_first(p_comp_for);
+
+ mp_int_t scope_idx;
+ p_comp_for = pt_get_small_int(p_comp_for, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this comprehension
+ scope_new_and_link(comp, scope_idx, kind, p, comp->scope_cur->emit_options);
+ }
+
+ // get the scope for this comprehension
+ scope_t *this_scope = comp->scopes[scope_idx];
+
+ // compile the comprehension
+ close_over_variables_etc(comp, this_scope, 0, 0);
+
+ compile_node(comp, pt_next(p_comp_for)); // source of the iterator
+ EMIT(get_iter);
+ EMIT_ARG(call_function, 1, 0, 0);
+}
+
+STATIC void compile_atom_paren(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // an empty tuple
+ c_tuple(comp, NULL, NULL, NULL);
+ } else {
+ assert(pt_is_rule(p, PN_testlist_comp));
+ p = pt_rule_first(p);
+ const byte *p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_testlist_comp_3b) || pt_is_rule(p1, PN_testlist_comp_3c)) {
+ // tuple of one item with trailing comma (3b); or tuple of many items (3c)
+ c_tuple(comp, p, pt_rule_first(p1), ptop);
+ } else if (pt_is_rule(p1, PN_comp_for)) {
+ // generator expression
+ compile_comprehension(comp, p, SCOPE_GEN_EXPR);
+ } else {
+ // tuple with 2 items
+ c_tuple(comp, NULL, p, ptop);
+ }
+ }
+}
+
+STATIC void compile_atom_bracket(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // empty list
+ EMIT_ARG(build_list, 0);
+ } else if (pt_is_rule(p, PN_testlist_comp)) {
+ p = pt_rule_first(p);
+ const byte *p3 = pt_next(p);
+ if (pt_is_rule(p3, PN_testlist_comp_3b) || pt_is_rule(p3, PN_testlist_comp_3c)) {
+ // list of one item with trailing comma (3b); or list of many items (3c)
+ p3 = pt_rule_first(p3);
+ compile_node(comp, p);
+ compile_generic_all_nodes(comp, p3, ptop);
+ EMIT_ARG(build_list, 1 + pt_num_nodes(p3, ptop));
+ } else if (pt_is_rule(p3, PN_comp_for)) {
+ // list comprehension
+ compile_comprehension(comp, p, SCOPE_LIST_COMP);
+ } else {
+ // list with 2 items
+ p = compile_node(comp, p);
+ compile_node(comp, p);
+ EMIT_ARG(build_list, 2);
+ }
+ } else {
+ // list with 1 item
+ compile_node(comp, p);
+ EMIT_ARG(build_list, 1);
+ }
+}
+
+STATIC void compile_atom_brace(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // empty dict
+ EMIT_ARG(build_map, 0);
+ } else if (pt_is_rule(p, PN_dictorsetmaker_item)) {
+ // dict with one element
+ EMIT_ARG(build_map, 1);
+ compile_node(comp, p);
+ EMIT(store_map);
+ } else if (pt_is_rule(p, PN_dictorsetmaker)) {
+ p = pt_rule_first(p);
+ const byte *p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_dictorsetmaker_list)) {
+ // dict/set with multiple elements
+ const byte *p1_top;
+ p1 = pt_rule_extract_top(p1, &p1_top);
+
+ // get tail elements (2nd, 3rd, ...)
+ if (p1 != p1_top) {
+ mp_parse_node_extract_list(&p1, PN_dictorsetmaker_list2);
+ }
+
+ // first element sets whether it's a dict or set
+ bool is_dict;
+ if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) {
+ // a dictionary
+ EMIT_ARG(build_map, 1 + pt_num_nodes(p1, p1_top));
+ compile_node(comp, p);
+ EMIT(store_map);
+ is_dict = true;
+ } else {
+ // a set
+ compile_node(comp, p); // 1st value of set
+ is_dict = false;
+ }
+
+ // process rest of elements
+ for (const byte *p_elem = p1; p_elem != p1_top;) {
+ bool is_key_value = pt_is_rule(p_elem, PN_dictorsetmaker_item);
+ p_elem = compile_node(comp, p_elem);
+ if (is_dict) {
+ if (!is_key_value) {
+ // TODO what is the correct p for error node?
+ compile_syntax_error(comp, p, "expecting key:value for dictionary");
+ return;
+ }
+ EMIT(store_map);
+ } else {
+ if (is_key_value) {
+ // TODO what is the correct p for error node?
+ compile_syntax_error(comp, p, "expecting just a value for set");
+ return;
+ }
+ }
+ }
+
+ #if MICROPY_PY_BUILTINS_SET
+ // if it's a set, build it
+ if (!is_dict) {
+ EMIT_ARG(build_set, 1 + pt_num_nodes(p1, p1_top));
+ }
+ #endif
+ } else {
+ assert(pt_is_rule(p1, PN_comp_for)); // should be
+ // dict/set comprehension
+ if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) {
+ // a dictionary comprehension
+ compile_comprehension(comp, p, SCOPE_DICT_COMP);
+ } else {
+ // a set comprehension
+ compile_comprehension(comp, p, SCOPE_SET_COMP);
+ }
+ }
+ } else {
+ // set with one element
+ #if MICROPY_PY_BUILTINS_SET
+ compile_node(comp, p);
+ EMIT_ARG(build_set, 1);
+ #else
+ assert(0);
+ #endif
+ }
+}
+
+STATIC void compile_trailer_paren(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (p >= ptop) {
+ p = NULL;
+ }
+ compile_trailer_paren_helper(comp, p, false, 0);
+}
+
+STATIC void compile_trailer_bracket(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ // object who's index we want is on top of stack
+ compile_node(comp, p); // the index
+ EMIT(load_subscr);
+}
+
+STATIC void compile_trailer_period(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ // object who's attribute we want is on top of stack
+ qstr attr;
+ p = pt_extract_id(p, &attr);
+ EMIT_ARG(load_attr, attr);
+}
+
+#if MICROPY_PY_BUILTINS_SLICE
+// p,ptop should be the args of subscript_3
+STATIC void compile_subscript_3_helper(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (p == ptop) {
+ // [?:]
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(build_slice, 2);
+ } else if (pt_is_rule(p, PN_subscript_3c)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ if (pt_is_rule_empty(p)) {
+ // [?::]
+ EMIT_ARG(build_slice, 2);
+ } else {
+ // [?::x]
+ compile_node(comp, pt_rule_first(p));
+ EMIT_ARG(build_slice, 3);
+ }
+ } else if (pt_is_rule(p, PN_subscript_3d)) {
+ p = pt_rule_first(p);
+ p = compile_node(comp, p);
+ assert(pt_is_rule(p, PN_sliceop)); // should always be
+ p = pt_rule_first(p);
+ if (p == ptop) {
+ // [?:x:]
+ EMIT_ARG(build_slice, 2);
+ } else {
+ // [?:x:x]
+ compile_node(comp, p);
+ EMIT_ARG(build_slice, 3);
+ }
+ } else {
+ // [?:x]
+ compile_node(comp, p);
+ EMIT_ARG(build_slice, 2);
+ }
+}
+
+STATIC void compile_subscript_2(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p); // start of slice
+ p = pt_rule_first(p); // skip header of subscript_3
+ compile_subscript_3_helper(comp, p, ptop);
+}
+
+STATIC void compile_subscript_3(compiler_t *comp, const byte *p, const byte *ptop) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ compile_subscript_3_helper(comp, p, ptop);
+}
+#endif // MICROPY_PY_BUILTINS_SLICE
+
+STATIC void compile_dictorsetmaker_item(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ // if this is called then we are compiling a dict key:value pair
+ compile_node(comp, pt_next(p)); // value
+ compile_node(comp, p); // key
+}
+
+STATIC void compile_classdef(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ qstr cname = compile_classdef_helper(comp, p, comp->scope_cur->emit_options);
+ // store class object into class name
+ compile_store_id(comp, cname);
+}
+
+STATIC void compile_yield_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
+ compile_syntax_error(comp, NULL, "'yield' outside function");
+ return;
+ }
+ if (pt_is_null_with_top(p, ptop)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(yield_value);
+ } else if (pt_is_rule(p, PN_yield_arg_from)) {
+ p = pt_rule_first(p);
+ compile_node(comp, p);
+ EMIT(get_iter);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(yield_from);
+ } else {
+ compile_node(comp, p);
+ EMIT(yield_value);
+ }
+}
+
+typedef void (*compile_function_t)(compiler_t*, const byte*, const byte*);
+STATIC compile_function_t compile_function[] = {
+#define nc NULL
+#define c(f) compile_##f
+#define DEF_RULE(rule, comp, kind, ...) comp,
+#include "py/grammar.h"
+#undef nc
+#undef c
+#undef DEF_RULE
+ NULL,
+};
+
+STATIC const byte *compile_node(compiler_t *comp, const byte *p) {
+ //printf("CN %p %02x %02x %02x\n", p, p[0], p[1], p[2]);
+ if (pt_is_null(p)) {
+ // pass
+ return p + 1;
+ } else if (pt_is_small_int(p)) {
+ mp_int_t arg;
+ p = pt_get_small_int(p, &arg);
+ #if MICROPY_DYNAMIC_COMPILER
+ mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1));
+ if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
+ // integer fits in target runtime's small-int
+ EMIT_ARG(load_const_small_int, arg);
+ } else {
+ // integer doesn't fit, so create a multi-precision int object
+ // (but only create the actual object on the last pass)
+ if (comp->pass != MP_PASS_EMIT) {
+ EMIT_ARG(load_const_obj, mp_const_none);
+ } else {
+ EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
+ }
+ }
+ #else
+ EMIT_ARG(load_const_small_int, arg);
+ #endif
+ return p;
+ } else if (pt_is_any_tok(p)) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ if (tok == MP_TOKEN_NEWLINE) {
+ // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
+ // or when single_input lets through a NEWLINE (user enters a blank line)
+ // do nothing
+ } else {
+ EMIT_ARG(load_const_tok, tok);
+ }
+ return p;
+ } else if (*p == MP_PT_STRING) {
+ qstr qst = p[1] | (p[2] << 8);
+ EMIT_ARG(load_const_str, qst);
+ return pt_next(p);
+ } else if (*p == MP_PT_BYTES) {
+ // only create and load the actual bytes object on the last pass
+ if (comp->pass != MP_PASS_EMIT) {
+ EMIT_ARG(load_const_obj, mp_const_none);
+ } else {
+ qstr qst = p[1] | (p[2] << 8);
+ size_t len;
+ const byte *data = qstr_data(qst, &len);
+ EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
+ }
+ return pt_next(p);
+ } else if (pt_is_any_id(p)) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ compile_load_id(comp, qst);
+ return p;
+ } else if (*p == MP_PT_CONST_OBJECT) {
+ size_t idx;
+ p = pt_extract_const_obj(p, &idx);
+ EMIT_ARG(load_const_obj, (mp_obj_t)comp->co_data[idx]);
+ return p;
+ } else {
+ assert(*p >= MP_PT_RULE_BASE);
+ size_t rule_id, src_line;
+ const byte *ptop;
+ p = pt_rule_extract(p, &rule_id, &src_line, &ptop);
+ EMIT_ARG(set_source_line, src_line);
+ compile_function_t f = compile_function[rule_id];
+ if (f == NULL) {
+ #if MICROPY_DEBUG_PRINTERS
+ printf("node %u cannot be compiled\n", (uint)rule_id);
+ //mp_parse_node_print(pn, 0);
+ #endif
+ compile_syntax_error(comp, p, "internal compiler error");
+ assert(0);
+ return ptop;
+ } else {
+ f(comp, p, ptop);
+ if (comp->compile_error != MP_OBJ_NULL && comp->compile_error_line == 0) {
+ // add line info for the error in case it didn't have a line number
+ comp->compile_error_line = src_line;
+ }
+ return ptop;
+ }
+ }
+}
+
+STATIC void compile_scope_func_lambda_param(compiler_t *comp, const byte *p, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
+ (void)pn_dbl_star;
+ // check that **kw is last
+ if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
+ compile_syntax_error(comp, p, "invalid syntax");
+ return;
+ }
+
+ qstr param_name = MP_QSTR_NULL;
+ uint param_flag = ID_FLAG_IS_PARAM;
+ if (pt_is_any_id(p)) {
+ pt_extract_id(p, &param_name);
+ if (comp->have_star) {
+ // comes after a star, so counts as a keyword-only parameter
+ comp->scope_cur->num_kwonly_args += 1;
+ } else {
+ // comes before a star, so counts as a positional parameter
+ comp->scope_cur->num_pos_args += 1;
+ }
+ } else {
+ if (pt_is_rule(p, pn_name)) {
+ pt_extract_id(pt_rule_first(p), &param_name);
+ if (comp->have_star) {
+ // comes after a star, so counts as a keyword-only parameter
+ comp->scope_cur->num_kwonly_args += 1;
+ } else {
+ // comes before a star, so counts as a positional parameter
+ comp->scope_cur->num_pos_args += 1;
+ }
+ } else if (pt_is_rule(p, pn_star)) {
+ if (comp->have_star) {
+ // more than one star
+ compile_syntax_error(comp, p, "invalid syntax");
+ return;
+ }
+ comp->have_star = true;
+ param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
+ if (pt_is_rule_empty(p)) {
+ // bare star
+ // TODO see http://www.python.org/dev/peps/pep-3102/
+ //assert(comp->scope_cur->num_dict_params == 0);
+ } else if (pt_is_any_id(pt_rule_first(p))) {
+ // named star
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
+ pt_extract_id(pt_rule_first(p), &param_name);
+ } else {
+ assert(pt_is_rule(pt_rule_first(p), PN_tfpdef)); // should be
+ // named star with possible annotation
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
+ pt_extract_id(pt_rule_first(pt_rule_first(p)), &param_name);
+ }
+ } else {
+ assert(pt_is_rule(p, pn_dbl_star)); // should be
+ pt_extract_id(pt_rule_first(p), &param_name);
+ param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
+ }
+ }
+
+ if (param_name != MP_QSTR_NULL) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
+ if (!added) {
+ compile_syntax_error(comp, p, "name reused for argument");
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ id_info->flags = param_flag;
+ }
+}
+
+STATIC void compile_scope_func_param(compiler_t *comp, const byte *p) {
+ compile_scope_func_lambda_param(comp, p, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
+}
+
+STATIC void compile_scope_lambda_param(compiler_t *comp, const byte *p) {
+ compile_scope_func_lambda_param(comp, p, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
+}
+
+#if MICROPY_EMIT_NATIVE
+STATIC void compile_scope_func_annotations(compiler_t *comp, const byte *p) {
+ if (pt_is_rule(p, PN_typedargslist_name)) {
+ // named parameter with possible annotation
+ // fallthrough
+ } else if (pt_is_rule(p, PN_typedargslist_star)) {
+ const byte *p0 = pt_rule_first(p);
+ if (pt_is_rule(p0, PN_tfpdef)) {
+ // named star with possible annotation
+ p = p0;
+ // fallthrough
+ } else {
+ // no annotation
+ return;
+ }
+ } else if (pt_is_rule(p, PN_typedargslist_dbl_star)) {
+ // double star with possible annotation
+ // fallthrough
+ } else {
+ // no annotation
+ return;
+ }
+
+ // p should be a rule whose first node is an identifier and second may be the annotation
+
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+
+ qstr param_name;
+ p = pt_extract_id(p, &param_name);
+
+ if (!pt_is_null_with_top(p, ptop)) {
+ id_info_t *id_info = scope_find(comp->scope_cur, param_name);
+ assert(id_info != NULL);
+
+ if (pt_is_any_id(p)) {
+ qstr arg_type;
+ pt_extract_id(p, &arg_type);
+ EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
+ } else {
+ compile_syntax_error(comp, p, "parameter annotation must be an identifier");
+ }
+ }
+}
+#endif // MICROPY_EMIT_NATIVE
+
+STATIC void compile_scope_comp_iter(compiler_t *comp, const byte *p_comp_for, const byte *p_comp_for_top, const byte *p_inner_expr, int for_depth) {
+ uint l_top = comp_next_label(comp);
+ uint l_end = comp_next_label(comp);
+ EMIT_ARG(label_assign, l_top);
+ EMIT_ARG(for_iter, l_end);
+ c_assign(comp, p_comp_for, ASSIGN_STORE);
+ const byte *p_iter = pt_next(pt_next(p_comp_for));
+
+ tail_recursion:
+ if (p_iter == p_comp_for_top) {
+ // no more nested if/for; compile inner expression
+ compile_node(comp, p_inner_expr);
+ if (comp->scope_cur->kind == SCOPE_LIST_COMP) {
+ EMIT_ARG(list_append, for_depth + 2);
+ } else if (comp->scope_cur->kind == SCOPE_DICT_COMP) {
+ EMIT_ARG(map_add, for_depth + 2);
+ #if MICROPY_PY_BUILTINS_SET
+ } else if (comp->scope_cur->kind == SCOPE_SET_COMP) {
+ EMIT_ARG(set_add, for_depth + 2);
+ #endif
+ } else {
+ EMIT(yield_value);
+ EMIT(pop_top);
+ }
+ } else if (pt_is_rule(p_iter, PN_comp_if)) {
+ // if condition
+ const byte *p0 = pt_rule_extract_top(p_iter, &p_comp_for_top);
+ p_iter = c_if_cond(comp, p0, false, l_top);
+ goto tail_recursion;
+ } else {
+ assert(pt_is_rule(p_iter, PN_comp_for)); // should be
+ // for loop
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p_iter, &ptop);
+ p0 = pt_next(p0); // skip scope index
+ compile_node(comp, pt_next(p0));
+ EMIT(get_iter);
+ compile_scope_comp_iter(comp, p0, ptop, p_inner_expr, for_depth + 1);
+ }
+
+ EMIT_ARG(jump, l_top);
+ EMIT_ARG(label_assign, l_end);
+ EMIT(for_iter_end);
+}
+
+#if 0
+STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
+#if MICROPY_ENABLE_DOC_STRING
+ // see http://www.python.org/dev/peps/pep-0257/
+
+ // look for the first statement
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
+ // a statement; fall through
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
+ // file input; find the first non-newline node
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (int i = 0; i < num_nodes; i++) {
+ pn = pns->nodes[i];
+ if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
+ // not a newline, so this is the first statement; finish search
+ break;
+ }
+ }
+ // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
+ // a list of statements; get the first one
+ pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
+ } else {
+ return;
+ }
+
+ // check the first statement for a doc string
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
+ && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) {
+ // compile the doc string
+ compile_node(comp, pns->nodes[0]);
+ // store the doc string
+ compile_store_id(comp, MP_QSTR___doc__);
+ }
+ }
+#else
+ (void)comp;
+ (void)pn;
+#endif
+}
+#endif
+
+STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
+ comp->pass = pass;
+ comp->scope_cur = scope;
+ comp->next_label = 1;
+ EMIT_ARG(start_pass, pass, scope);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // reset maximum stack sizes in scope
+ // they will be computed in this first pass
+ scope->stack_size = 0;
+ scope->exc_stack_size = 0;
+ }
+
+ // compile
+ if (pt_is_rule(scope->pn, PN_eval_input)) {
+ assert(scope->kind == SCOPE_MODULE);
+ compile_node(comp, pt_rule_first(scope->pn)); // compile the expression
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_MODULE) {
+ if (!comp->is_repl) {
+ //check_for_doc_string(comp, scope->pn);
+ }
+ compile_node(comp, scope->pn);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_FUNCTION) {
+ const byte *p = scope->pn;
+
+ p = pt_next(p); // skip func name
+
+ // work out number of parameters, keywords and default parameters, and add them to the id_info array
+ // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
+ if (comp->pass == MP_PASS_SCOPE) {
+ comp->have_star = false;
+ apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_param);
+ }
+
+ #if MICROPY_EMIT_NATIVE
+ else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
+ // compile annotations; only needed on latter compiler passes
+ // only needed for viper emitter
+
+ // argument annotations
+ apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_annotations);
+
+ const byte *p_ret = pt_next(p); // skip arg list
+
+ // next node is return/whole function annotation
+ if (pt_is_any_id(p_ret)) {
+ qstr ret_type;
+ pt_extract_id(p_ret, &ret_type);
+ EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
+ } else if (!pt_is_null(p_ret)) {
+ compile_syntax_error(comp, p_ret, "return annotation must be an identifier");
+ }
+ }
+ #endif // MICROPY_EMIT_NATIVE
+
+ p = pt_next(p); // skip arg list
+ p = pt_next(p); // skip return annotation
+
+ compile_node(comp, p); // function body
+
+ // emit return if it wasn't the last opcode
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(return_value);
+ }
+ } else if (scope->kind == SCOPE_LAMBDA) {
+ const byte *p = scope->pn;
+
+ // work out number of parameters, keywords and default parameters, and add them to the id_info array
+ // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
+ if (comp->pass == MP_PASS_SCOPE) {
+ comp->have_star = false;
+ apply_to_single_or_list(comp, p, PN_varargslist, compile_scope_lambda_param);
+ }
+
+ p = pt_next(p); // skip arg list
+
+ compile_node(comp, p); // lambda body
+
+ // if the lambda is a generator, then we return None, not the result of the expression of the lambda
+ if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
+ EMIT(pop_top);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
+ const byte *p = scope->pn;
+ const byte *p_comp_for = pt_next(p);
+ const byte *p_comp_for_top;
+ p_comp_for = pt_rule_extract_top(p_comp_for, &p_comp_for_top);
+ p_comp_for = pt_next(p_comp_for); // skip scope index
+
+ // We need a unique name for the comprehension argument (the iterator).
+ // CPython uses .0, but we should be able to use anything that won't
+ // clash with a user defined variable. Best to use an existing qstr,
+ // so we use the blank qstr.
+ qstr qstr_arg = MP_QSTR_;
+ if (comp->pass == MP_PASS_SCOPE) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
+ assert(added);
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ scope->num_pos_args = 1;
+ }
+
+ if (scope->kind == SCOPE_LIST_COMP) {
+ EMIT_ARG(build_list, 0);
+ } else if (scope->kind == SCOPE_DICT_COMP) {
+ EMIT_ARG(build_map, 0);
+ #if MICROPY_PY_BUILTINS_SET
+ } else if (scope->kind == SCOPE_SET_COMP) {
+ EMIT_ARG(build_set, 0);
+ #endif
+ }
+
+ compile_load_id(comp, qstr_arg);
+ compile_scope_comp_iter(comp, p_comp_for, p_comp_for_top, p, 0);
+
+ if (scope->kind == SCOPE_GEN_EXPR) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+ EMIT(return_value);
+ } else {
+ assert(scope->kind == SCOPE_CLASS);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
+ assert(added);
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ }
+
+ // just to check, should remove this code
+ qstr class_name;
+ pt_extract_id(scope->pn, &class_name);
+ assert(class_name == scope->simple_name);
+
+ compile_load_id(comp, MP_QSTR___name__);
+ compile_store_id(comp, MP_QSTR___module__);
+ EMIT_ARG(load_const_str, scope->simple_name);
+ compile_store_id(comp, MP_QSTR___qualname__);
+
+ const byte *p = pt_next(pt_next(scope->pn)); // skip name, bases
+ //check_for_doc_string(comp, p);
+ compile_node(comp, p); // class body
+
+ id_info_t *id = scope_find(scope, MP_QSTR___class__);
+ assert(id != NULL);
+ if (id->kind == ID_INFO_KIND_LOCAL) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ } else {
+ EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
+ }
+ EMIT(return_value);
+ }
+
+ EMIT(end_pass);
+
+ // make sure we match all the exception levels
+ assert(comp->cur_except_level == 0);
+}
+
+#if MICROPY_EMIT_INLINE_THUMB
+// requires 3 passes: SCOPE, CODE_SIZE, EMIT
+STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
+ comp->pass = pass;
+ comp->scope_cur = scope;
+ comp->next_label = 1;
+
+ if (scope->kind != SCOPE_FUNCTION) {
+ compile_syntax_error(comp, NULL, "inline assembler must be a function");
+ return;
+ }
+
+ if (comp->pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(start_pass, comp->pass, comp->scope_cur, &comp->compile_error);
+ }
+
+ // get the function definition parse node
+ const byte *p = scope->pn;
+ assert(pt_is_any_id(p));
+ p = pt_next(p); // skip the function name
+
+ // parameters are in next node
+ if (comp->pass == MP_PASS_CODE_SIZE) {
+ const byte *pp = p;
+ const byte *pptop = mp_parse_node_extract_list(&pp, PN_typedargslist);
+ scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, pp, pptop);
+ if (comp->compile_error != MP_OBJ_NULL) {
+ goto inline_asm_error;
+ }
+ }
+
+ p = pt_next(p); // skip the parameter list
+
+ // function return annotation is in the next node
+ mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
+ if (!pt_is_null(p)) {
+ if (pt_is_any_id(p)) {
+ qstr ret_type;
+ pt_extract_id(p, &ret_type);
+ switch (ret_type) {
+ case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break;
+ case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break;
+ case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break;
+ case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break;
+ default: compile_syntax_error(comp, p, "unknown type"); return;
+ }
+ } else {
+ compile_syntax_error(comp, p, "return annotation must be an identifier");
+ }
+ }
+ p = pt_next(p); // move past function return annotation
+
+ // get the list of statements within the body of the function
+ const byte *ptop = mp_parse_node_extract_list(&p, PN_suite_block_stmts);
+
+ for (const byte *p_instr = p; p_instr != ptop; p_instr = pt_next(p_instr)) {
+ p = p_instr;
+ if (pt_is_rule(p, PN_pass_stmt)) {
+ // no instructions
+ continue;
+ } else if (!pt_is_rule(p, PN_expr_stmt)) {
+ // not an instruction; error
+ not_an_instruction:
+ compile_syntax_error(comp, p, "expecting an assembler instruction");
+ return;
+ }
+
+ // check structure of parse node
+ const byte *p_expr_top;
+ const byte *p_expr = pt_rule_extract_top(p, &p_expr_top);
+ if (!pt_is_rule(p_expr, PN_power)) {
+ goto not_an_instruction;
+ }
+ if (pt_next(p_expr) != p_expr_top) {
+ goto not_an_instruction;
+ }
+ p_expr = pt_rule_extract_top(p_expr, &p_expr_top);
+ if (!pt_is_any_id(p_expr)) {
+ goto not_an_instruction;
+ }
+ const byte *p_expr_paren = pt_next(p_expr);
+ if (p_expr_paren == p_expr_top || !pt_is_rule(p_expr_paren, PN_trailer_paren)) {
+ goto not_an_instruction;
+ }
+ if (pt_next(p_expr_paren) != p_expr_top) {
+ goto not_an_instruction;
+ }
+
+ // parse node looks like an instruction
+ // get instruction name and args
+ qstr op;
+ pt_extract_id(p_expr, &op);
+
+ const byte *p_args = pt_rule_first(p_expr_paren);
+ const byte *p_args_top = mp_parse_node_extract_list(&p_args, PN_arglist);
+ uint n_args = pt_num_nodes(p_args, p_args_top);
+
+ // emit instructions
+ if (op == MP_QSTR_label) {
+ if (!(n_args == 1 && pt_is_any_id(p_args))) {
+ compile_syntax_error(comp, p, "'label' requires 1 argument");
+ return;
+ }
+ uint lab = comp_next_label(comp);
+ if (pass > MP_PASS_SCOPE) {
+ qstr id;
+ pt_extract_id(p_args, &id);
+ if (!EMIT_INLINE_ASM_ARG(label, lab, id)) {
+ compile_syntax_error(comp, p, "label redefined");
+ return;
+ }
+ }
+ } else if (op == MP_QSTR_align) {
+ if (!(n_args == 1 && pt_is_small_int(p_args))) {
+ compile_syntax_error(comp, p, "'align' requires 1 argument");
+ return;
+ }
+ if (pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(align, pt_small_int_value(p_args));
+ }
+ } else if (op == MP_QSTR_data) {
+ if (!(n_args >= 2 && pt_is_small_int(p_args))) {
+ compile_syntax_error(comp, p, "'data' requires at least 2 arguments");
+ return;
+ }
+ if (pass > MP_PASS_SCOPE) {
+ mp_int_t bytesize;
+ p_args = pt_get_small_int(p_args, &bytesize);
+ for (uint j = 1; j < n_args; j++) {
+ if (!pt_is_small_int(p_args)) {
+ compile_syntax_error(comp, p, "'data' requires integer arguments");
+ return;
+ }
+ mp_int_t val;
+ p_args = pt_get_small_int(p_args, &val);
+ EMIT_INLINE_ASM_ARG(data, bytesize, val);
+ }
+ }
+ } else {
+ if (pass > MP_PASS_SCOPE) {
+ if (n_args > 3) {
+ goto not_an_instruction;
+ }
+ const byte *pn_arg[3];
+ pn_arg[0] = p_args;
+ pn_arg[1] = pt_next(pn_arg[0]);
+ pn_arg[2] = pt_next(pn_arg[1]);
+ EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ goto inline_asm_error;
+ }
+ }
+
+ if (comp->pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(end_pass, type_sig);
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // inline assembler had an error; set line for its exception
+ inline_asm_error:
+ compile_error_set_line(comp, p);
+ }
+}
+#endif
+
+STATIC void scope_compute_things(scope_t *scope) {
+ // in Micro Python we put the *x parameter after all other parameters (except **y)
+ if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
+ id_info_t *id_param = NULL;
+ for (int i = scope->id_info_len - 1; i >= 0; i--) {
+ id_info_t *id = &scope->id_info[i];
+ if (id->flags & ID_FLAG_IS_STAR_PARAM) {
+ if (id_param != NULL) {
+ // swap star param with last param
+ id_info_t temp = *id_param; *id_param = *id; *id = temp;
+ }
+ break;
+ } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
+ id_param = id;
+ }
+ }
+ }
+
+ // in functions, turn implicit globals into explicit globals
+ // compute the index of each local
+ scope->num_locals = 0;
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
+ // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
+ continue;
+ }
+ if (scope->kind >= SCOPE_FUNCTION && scope->kind <= SCOPE_GEN_EXPR && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
+ id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+ }
+ // params always count for 1 local, even if they are a cell
+ if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num = scope->num_locals++;
+ }
+ }
+
+ // compute the index of cell vars
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ // in Micro Python the cells come right after the fast locals
+ // parameters are not counted here, since they remain at the start
+ // of the locals, even if they are cell vars
+ if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num = scope->num_locals;
+ scope->num_locals += 1;
+ }
+ }
+
+ // compute the index of free vars
+ // make sure they are in the order of the parent scope
+ if (scope->parent != NULL) {
+ int num_free = 0;
+ for (int i = 0; i < scope->parent->id_info_len; i++) {
+ id_info_t *id = &scope->parent->id_info[i];
+ if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
+ for (int j = 0; j < scope->id_info_len; j++) {
+ id_info_t *id2 = &scope->id_info[j];
+ if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
+ assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
+ // in Micro Python the frees come first, before the params
+ id2->local_num = num_free;
+ num_free += 1;
+ }
+ }
+ }
+ }
+ // in Micro Python shift all other locals after the free locals
+ if (num_free > 0) {
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num += num_free;
+ }
+ }
+ scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
+ scope->num_locals += num_free;
+ }
+ }
+}
+
+#if !MICROPY_PERSISTENT_CODE_SAVE
+STATIC
+#endif
+mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
+ // put compiler state on the stack, it's relatively small
+ compiler_t comp_state = {0};
+ compiler_t *comp = &comp_state;
+
+ comp->source_file = source_file;
+ comp->is_repl = is_repl;
+ comp->co_data = parse_tree->co_data;
+
+ // create the array of scopes
+ comp->num_scopes = pt_small_int_value(pt_next(parse_tree->root));
+ comp->scopes = m_new0(scope_t*, comp->num_scopes);
+
+ // create the module scope
+ scope_new_and_link(comp, 0, SCOPE_MODULE, parse_tree->root, emit_opt);
+
+ // create standard emitter; it's used at least for MP_PASS_SCOPE
+ emit_t *emit_bc = emit_bc_new();
+
+ // compile pass 1
+ comp->emit = emit_bc;
+ #if MICROPY_EMIT_NATIVE
+ comp->emit_method_table = &emit_bc_method_table;
+ #endif
+ uint max_num_labels = 0;
+
+ // grrr: scope for nested comp_for's are not used, unless they are parenthesised
+ // and become individual generators; in this case they are parsed in the wrong
+ // direction for allocation of scope id
+ bool keep_going = true;
+ while (keep_going) {
+ keep_going = false;
+
+ for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
+ scope_t *s = comp->scopes[i];
+ if (s == NULL) { continue; } // no scope (yet?)
+ if (s->raw_code != NULL) { continue; } // scope already did pass 1
+ keep_going = true;
+ s->raw_code = mp_emit_glue_new_raw_code();
+ if (false) {
+#if MICROPY_EMIT_INLINE_THUMB
+ } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) {
+ compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
+#endif
+ } else {
+ compile_scope(comp, s, MP_PASS_SCOPE);
+ }
+
+ // update maximim number of labels needed
+ if (comp->next_label > max_num_labels) {
+ max_num_labels = comp->next_label;
+ }
+ }
+ }
+
+ // compute some things related to scope and identifiers
+ for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
+ scope_t *s = comp->scopes[i];
+ if (s == NULL) { continue; } // TODO scope for nested comp_for's are not used
+ scope_compute_things(s);
+ }
+
+ // set max number of labels now that it's calculated
+ emit_bc_set_max_num_labels(emit_bc, max_num_labels);
+
+ // compile pass 2 and 3
+#if MICROPY_EMIT_NATIVE
+ emit_t *emit_native = NULL;
+#endif
+#if MICROPY_EMIT_INLINE_THUMB
+ emit_inline_asm_t *emit_inline_thumb = NULL;
+#endif
+ for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
+ scope_t *s = comp->scopes[i];
+ if (s == NULL) { continue; }
+ if (false) {
+ // dummy
+
+#if MICROPY_EMIT_INLINE_THUMB
+ } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) {
+ // inline assembly for thumb
+ if (emit_inline_thumb == NULL) {
+ emit_inline_thumb = emit_inline_thumb_new(max_num_labels);
+ }
+ comp->emit = NULL;
+ comp->emit_inline_asm = emit_inline_thumb;
+ comp->emit_inline_asm_method_table = &emit_inline_thumb_method_table;
+ compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
+ }
+#endif
+
+ } else {
+
+ // choose the emit type
+
+ switch (s->emit_options) {
+
+#if MICROPY_EMIT_NATIVE
+ case MP_EMIT_OPT_NATIVE_PYTHON:
+ case MP_EMIT_OPT_VIPER:
+#if MICROPY_EMIT_X64
+ if (emit_native == NULL) {
+ emit_native = emit_native_x64_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_x64_method_table;
+#elif MICROPY_EMIT_X86
+ if (emit_native == NULL) {
+ emit_native = emit_native_x86_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_x86_method_table;
+#elif MICROPY_EMIT_THUMB
+ if (emit_native == NULL) {
+ emit_native = emit_native_thumb_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_thumb_method_table;
+#elif MICROPY_EMIT_ARM
+ if (emit_native == NULL) {
+ emit_native = emit_native_arm_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_arm_method_table;
+#endif
+ comp->emit = emit_native;
+ EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
+ break;
+#endif // MICROPY_EMIT_NATIVE
+
+ default:
+ comp->emit = emit_bc;
+ #if MICROPY_EMIT_NATIVE
+ comp->emit_method_table = &emit_bc_method_table;
+ #endif
+ break;
+ }
+
+ // need a pass to compute stack size
+ compile_scope(comp, s, MP_PASS_STACK_SIZE);
+
+ // second last pass: compute code size
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope(comp, s, MP_PASS_CODE_SIZE);
+ }
+
+ // final pass: emit code
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope(comp, s, MP_PASS_EMIT);
+ }
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // if there is no line number for the error then use the line
+ // number for the start of this scope
+ compile_error_set_line(comp, comp->scope_cur->pn);
+ // add a traceback to the exception using relevant source info
+ mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
+ comp->compile_error_line, comp->scope_cur->simple_name);
+ }
+
+ // free the emitters
+
+ emit_bc_free(emit_bc);
+#if MICROPY_EMIT_NATIVE
+ if (emit_native != NULL) {
+#if MICROPY_EMIT_X64
+ emit_native_x64_free(emit_native);
+#elif MICROPY_EMIT_X86
+ emit_native_x86_free(emit_native);
+#elif MICROPY_EMIT_THUMB
+ emit_native_thumb_free(emit_native);
+#elif MICROPY_EMIT_ARM
+ emit_native_arm_free(emit_native);
+#endif
+ }
+#endif
+#if MICROPY_EMIT_INLINE_THUMB
+ if (emit_inline_thumb != NULL) {
+ emit_inline_thumb_free(emit_inline_thumb);
+ }
+#endif
+
+ // free the parse tree
+ mp_parse_tree_clear(parse_tree);
+
+ mp_raw_code_t *outer_raw_code = comp->scopes[0]->raw_code;
+
+ // free the scopes
+ for (uint i = 0; i < comp->num_scopes; ++i) {
+ if (comp->scopes[i] == NULL) { continue; } // TODO scope for nested comp_for's are not used
+ scope_free(comp->scopes[i]);
+ }
+ m_del(scope_t*, comp->scopes, comp->num_scopes);
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ nlr_raise(comp->compile_error);
+ } else {
+ return outer_raw_code;
+ }
+}
+
+mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
+ mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl);
+ // return function that executes the outer module
+ return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
+}
+
+#endif // MICROPY_ENABLE_COMPILER
diff --git a/py/emit.h b/py/emit.h
index 9121e719f7..652e6118fb 100644
--- a/py/emit.h
+++ b/py/emit.h
@@ -269,11 +269,11 @@ typedef struct _emit_inline_asm_t emit_inline_asm_t;
typedef struct _emit_inline_asm_method_table_t {
void (*start_pass)(emit_inline_asm_t *emit, pass_kind_t pass, scope_t *scope, mp_obj_t *error_slot);
void (*end_pass)(emit_inline_asm_t *emit, mp_uint_t type_sig);
- mp_uint_t (*count_params)(emit_inline_asm_t *emit, mp_uint_t n_params, mp_parse_node_t *pn_params);
+ mp_uint_t (*count_params)(emit_inline_asm_t *emit, const byte *p, const byte *ptop);
bool (*label)(emit_inline_asm_t *emit, mp_uint_t label_num, qstr label_id);
void (*align)(emit_inline_asm_t *emit, mp_uint_t align);
void (*data)(emit_inline_asm_t *emit, mp_uint_t bytesize, mp_uint_t val);
- void (*op)(emit_inline_asm_t *emit, qstr op, mp_uint_t n_args, mp_parse_node_t *pn_args);
+ void (*op)(emit_inline_asm_t *emit, qstr op, mp_uint_t n_args, const byte **pn_args);
} emit_inline_asm_method_table_t;
extern const emit_inline_asm_method_table_t emit_inline_thumb_method_table;
diff --git a/py/emitglue.c b/py/emitglue.c
index c657d40d12..b710371177 100644
--- a/py/emitglue.c
+++ b/py/emitglue.c
@@ -61,6 +61,7 @@ void mp_emit_glue_assign_bytecode(mp_raw_code_t *rc, const byte *code, mp_uint_t
uint16_t n_obj, uint16_t n_raw_code,
#endif
mp_uint_t scope_flags) {
+ (void)len; // possibly unused
rc->kind = MP_CODE_BYTECODE;
rc->scope_flags = scope_flags;
diff --git a/py/emitinlinethumb.c b/py/emitinlinethumb.c
index 90a68caa6d..9ee1ab170d 100644
--- a/py/emitinlinethumb.c
+++ b/py/emitinlinethumb.c
@@ -95,18 +95,21 @@ STATIC void emit_inline_thumb_end_pass(emit_inline_asm_t *emit, mp_uint_t type_s
}
}
-STATIC mp_uint_t emit_inline_thumb_count_params(emit_inline_asm_t *emit, mp_uint_t n_params, mp_parse_node_t *pn_params) {
- if (n_params > 4) {
- emit_inline_thumb_error_msg(emit, "can only have up to 4 parameters to Thumb assembly");
- return 0;
- }
- for (mp_uint_t i = 0; i < n_params; i++) {
- if (!MP_PARSE_NODE_IS_ID(pn_params[i])) {
+STATIC mp_uint_t emit_inline_thumb_count_params(emit_inline_asm_t *emit, const byte *p, const byte *ptop) {
+ mp_uint_t n_params = 0;
+ while (p != ptop) {
+ if (++n_params > 4) {
+ emit_inline_thumb_error_msg(emit, "can only have up to 4 parameters to Thumb assembly");
+ return 0;
+ }
+ if (!pt_is_any_id(p)) {
emit_inline_thumb_error_msg(emit, "parameters must be registers in sequence r0 to r3");
return 0;
}
- const char *p = qstr_str(MP_PARSE_NODE_LEAF_ARG(pn_params[i]));
- if (!(strlen(p) == 2 && p[0] == 'r' && p[1] == '0' + i)) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ const char *param = qstr_str(qst);
+ if (!(strlen(param) == 2 && param[0] == 'r' && param[1] == '0' + n_params - 1)) {
emit_inline_thumb_error_msg(emit, "parameters must be registers in sequence r0 to r3");
return 0;
}
@@ -171,16 +174,17 @@ STATIC const special_reg_name_t special_reg_name_table[] = {
// return empty string in case of error, so we can attempt to parse the string
// without a special check if it was in fact a string
-STATIC const char *get_arg_str(mp_parse_node_t pn) {
- if (MP_PARSE_NODE_IS_ID(pn)) {
- qstr qst = MP_PARSE_NODE_LEAF_ARG(pn);
+STATIC const char *get_arg_str(const byte *pn) {
+ if (pt_is_any_id(pn)) {
+ qstr qst;
+ pt_extract_id(pn, &qst);
return qstr_str(qst);
} else {
return "";
}
}
-STATIC mp_uint_t get_arg_reg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, mp_uint_t max_reg) {
+STATIC mp_uint_t get_arg_reg(emit_inline_asm_t *emit, const char *op, const byte *pn, mp_uint_t max_reg) {
const char *reg_str = get_arg_str(pn);
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(reg_name_table); i++) {
const reg_name_t *r = &reg_name_table[i];
@@ -204,7 +208,7 @@ STATIC mp_uint_t get_arg_reg(emit_inline_asm_t *emit, const char *op, mp_parse_n
return 0;
}
-STATIC mp_uint_t get_arg_special_reg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
+STATIC mp_uint_t get_arg_special_reg(emit_inline_asm_t *emit, const char *op, const byte *pn) {
const char *reg_str = get_arg_str(pn);
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(special_reg_name_table); i++) {
const special_reg_name_t *r = &special_reg_name_table[i];
@@ -219,7 +223,7 @@ STATIC mp_uint_t get_arg_special_reg(emit_inline_asm_t *emit, const char *op, mp
}
#if MICROPY_EMIT_INLINE_THUMB_FLOAT
-STATIC mp_uint_t get_arg_vfpreg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
+STATIC mp_uint_t get_arg_vfpreg(emit_inline_asm_t *emit, const char *op, const byte *pn) {
const char *reg_str = get_arg_str(pn);
if (reg_str[0] == 's' && reg_str[1] != '\0') {
mp_uint_t regno = 0;
@@ -247,43 +251,42 @@ malformed:
}
#endif
-STATIC mp_uint_t get_arg_reglist(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
+STATIC mp_uint_t get_arg_reglist(emit_inline_asm_t *emit, const char *op, const byte *p) {
// a register list looks like {r0, r1, r2} and is parsed as a Python set
- if (!MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_brace)) {
+ if (!pt_is_rule(p, PN_atom_brace)) {
goto bad_arg;
}
- mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
- assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 1); // should always be
- pn = pns->nodes[0];
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
mp_uint_t reglist = 0;
- if (MP_PARSE_NODE_IS_ID(pn)) {
+ if (p == ptop) {
+ goto bad_arg;
+ } else if (pt_is_any_id(p)) {
// set with one element
- reglist |= 1 << get_arg_reg(emit, op, pn, 15);
- } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
- pns = (mp_parse_node_struct_t*)pn;
- if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
- assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
- mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
- if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
- // set with multiple elements
-
- // get first element of set (we rely on get_arg_reg to catch syntax errors)
- reglist |= 1 << get_arg_reg(emit, op, pns->nodes[0], 15);
-
- // get tail elements (2nd, 3rd, ...)
- mp_parse_node_t *nodes;
- int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
-
- // process rest of elements
- for (int i = 0; i < n; i++) {
- reglist |= 1 << get_arg_reg(emit, op, nodes[i], 15);
- }
- } else {
- goto bad_arg;
+ reglist |= 1 << get_arg_reg(emit, op, p, 15);
+ } else if (pt_is_rule(p, PN_dictorsetmaker)) {
+ p = pt_rule_first(p);
+ const byte *p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_dictorsetmaker_list)) {
+ // set with multiple elements
+
+ // get first element of set (we rely on get_arg_reg to catch syntax errors)
+ reglist |= 1 << get_arg_reg(emit, op, p, 15);
+
+ // get tail elements (2nd, 3rd, ...)
+ const byte *p1_top;
+ p1 = pt_rule_extract_top(p1, &p1_top);
+ if (p1 != p1_top) {
+ mp_parse_node_extract_list(&p1, PN_dictorsetmaker_list2);
+ }
+
+ // process rest of elements
+ for (; p1 != p1_top; p1 = pt_next(p1)) {
+ reglist |= 1 << get_arg_reg(emit, op, p1, 15);
}
} else {
goto bad_arg;
@@ -299,7 +302,7 @@ bad_arg:
return 0;
}
-STATIC uint32_t get_arg_i(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, uint32_t fit_mask) {
+STATIC uint32_t get_arg_i(emit_inline_asm_t *emit, const char *op, const byte *pn, uint32_t fit_mask) {
mp_obj_t o;
if (!mp_parse_node_get_int_maybe(pn, &o)) {
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, "'%s' expects an integer", op));
@@ -313,21 +316,25 @@ STATIC uint32_t get_arg_i(emit_inline_asm_t *emit, const char *op, mp_parse_node
return i;
}
-STATIC bool get_arg_addr(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, mp_parse_node_t *pn_base, mp_parse_node_t *pn_offset) {
- if (!MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_bracket)) {
+STATIC bool get_arg_addr(emit_inline_asm_t *emit, const char *op, const byte *p, const byte **p_base, const byte **p_offset) {
+ if (!pt_is_rule(p, PN_atom_bracket)) {
+ goto bad_arg;
+ }
+ if (pt_is_rule_empty(p)) {
goto bad_arg;
}
- mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
- if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
+ p = pt_rule_first(p);
+ if (!pt_is_rule(p, PN_testlist_comp)) {
goto bad_arg;
}
- pns = (mp_parse_node_struct_t*)pns->nodes[0];
- if (MP_PARSE_NODE_STRUCT_NUM_NODES(pns) != 2) {
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+ if (pt_num_nodes(p, ptop) != 2) {
goto bad_arg;
}
- *pn_base = pns->nodes[0];
- *pn_offset = pns->nodes[1];
+ *p_base = p;
+ *p_offset = pt_next(p);
return true;
bad_arg:
@@ -335,12 +342,13 @@ bad_arg:
return false;
}
-STATIC int get_arg_label(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) {
- if (!MP_PARSE_NODE_IS_ID(pn)) {
+STATIC int get_arg_label(emit_inline_asm_t *emit, const char *op, const byte *p) {
+ if (!pt_is_any_id(p)) {
emit_inline_thumb_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, "'%s' expects a label", op));
return 0;
}
- qstr label_qstr = MP_PARSE_NODE_LEAF_ARG(pn);
+ qstr label_qstr;
+ pt_extract_id(p, &label_qstr);
for (uint i = 0; i < emit->max_num_labels; i++) {
if (emit->label_lookup[i] == label_qstr) {
return i;
@@ -419,7 +427,7 @@ STATIC const format_vfp_op_t format_vfp_op_table[] = {
// shorthand alias for whether we allow ARMv7-M instructions
#define ARMV7M MICROPY_EMIT_INLINE_THUMB_ARMV7M
-STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_args, mp_parse_node_t *pn_args) {
+STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_args, const byte **pn_args) {
// TODO perhaps make two tables:
// one_args =
// "b", LAB, asm_thumb_b_n,
@@ -493,7 +501,7 @@ STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_a
op_code_hi = 0xed90;
op_vldr_vstr:;
mp_uint_t vd = get_arg_vfpreg(emit, op_str, pn_args[0]);
- mp_parse_node_t pn_base, pn_offset;
+ const byte *pn_base, *pn_offset;
if (get_arg_addr(emit, op_str, pn_args[1], &pn_base, &pn_offset)) {
mp_uint_t rlo_base = get_arg_reg(emit, op_str, pn_base, 7);
mp_uint_t i8;
@@ -632,7 +640,7 @@ STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_a
}
} else if (n_args == 2) {
- if (MP_PARSE_NODE_IS_ID(pn_args[1])) {
+ if (pt_is_any_id(pn_args[1])) {
// second arg is a register (or should be)
mp_uint_t op_code, op_code_hi;
if (op == MP_QSTR_mov) {
@@ -711,7 +719,7 @@ STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_a
asm_thumb_mov_reg_i16(emit->as, ASM_THUMB_OP_MOVT, reg_dest, (i_src >> 16) & 0xffff);
} else if (ARMV7M && op == MP_QSTR_ldrex) {
mp_uint_t r_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
- mp_parse_node_t pn_base, pn_offset;
+ const byte *pn_base, *pn_offset;
if (get_arg_addr(emit, op_str, pn_args[1], &pn_base, &pn_offset)) {
mp_uint_t r_base = get_arg_reg(emit, op_str, pn_base, 15);
mp_uint_t i8 = get_arg_i(emit, op_str, pn_offset, 0xff) >> 2;
@@ -722,7 +730,7 @@ STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_a
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(format_9_10_op_table); i++) {
if (op == format_9_10_op_table[i].name) {
op_code = format_9_10_op_table[i].op;
- mp_parse_node_t pn_base, pn_offset;
+ const byte *pn_base, *pn_offset;
mp_uint_t rlo_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
if (get_arg_addr(emit, op_str, pn_args[1], &pn_base, &pn_offset)) {
mp_uint_t rlo_base = get_arg_reg(emit, op_str, pn_base, 7);
@@ -767,7 +775,7 @@ STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_a
rlo_dest = get_arg_reg(emit, op_str, pn_args[0], 7);
rlo_src = get_arg_reg(emit, op_str, pn_args[1], 7);
int src_b;
- if (MP_PARSE_NODE_IS_ID(pn_args[2])) {
+ if (pt_is_any_id(pn_args[2])) {
op_code |= ASM_THUMB_FORMAT_2_REG_OPERAND;
src_b = get_arg_reg(emit, op_str, pn_args[2], 7);
} else {
@@ -792,7 +800,7 @@ STATIC void emit_inline_thumb_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_a
} else if (ARMV7M && op == MP_QSTR_strex) {
mp_uint_t r_dest = get_arg_reg(emit, op_str, pn_args[0], 15);
mp_uint_t r_src = get_arg_reg(emit, op_str, pn_args[1], 15);
- mp_parse_node_t pn_base, pn_offset;
+ const byte *pn_base, *pn_offset;
if (get_arg_addr(emit, op_str, pn_args[2], &pn_base, &pn_offset)) {
mp_uint_t r_base = get_arg_reg(emit, op_str, pn_base, 15);
mp_uint_t i8 = get_arg_i(emit, op_str, pn_offset, 0xff) >> 2;
diff --git a/py/gc.c b/py/gc.c
index 4e4cd9f303..41526c8b09 100644
--- a/py/gc.c
+++ b/py/gc.c
@@ -409,12 +409,12 @@ found:
void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
- // zero out the additional bytes of the newly allocated blocks
+ // Zero out all the bytes of the newly allocated blocks.
// This is needed because the blocks may have previously held pointers
// to the heap and will not be set to something else if the caller
// doesn't actually use the entire block. As such they will continue
// to point to the heap and may prevent other blocks from being reclaimed.
- memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
+ memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
#if MICROPY_ENABLE_FINALISER
if (has_finaliser) {
@@ -620,8 +620,8 @@ void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
ATB_FREE_TO_TAIL(bl);
}
- // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
- memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
+ // zero out the bytes of the newly allocated blocks (see comment above in gc_alloc)
+ memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
diff --git a/py/grammar.h b/py/grammar.h
index e261aad226..dd21d193a1 100644
--- a/py/grammar.h
+++ b/py/grammar.h
@@ -268,8 +268,7 @@ DEF_RULE(power_dbl_star, nc, and_ident(2), tok(OP_DBL_STAR), rule(factor))
// testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
// trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
-DEF_RULE(atom, nc, or(11), tok(NAME), tok(INTEGER), tok(FLOAT_OR_IMAG), rule(atom_string), tok(ELLIPSIS), tok(KW_NONE), tok(KW_TRUE), tok(KW_FALSE), rule(atom_paren), rule(atom_bracket), rule(atom_brace))
-DEF_RULE(atom_string, c(atom_string), one_or_more, rule(string_or_bytes))
+DEF_RULE(atom, nc, or(12), tok(NAME), tok(INTEGER), tok(FLOAT_OR_IMAG), tok(STRING), tok(BYTES), tok(ELLIPSIS), tok(KW_NONE), tok(KW_TRUE), tok(KW_FALSE), rule(atom_paren), rule(atom_bracket), rule(atom_brace))
DEF_RULE(string_or_bytes, nc, or(2), tok(STRING), tok(BYTES))
DEF_RULE(atom_paren, c(atom_paren), and(3), tok(DEL_PAREN_OPEN), opt_rule(atom_2b), tok(DEL_PAREN_CLOSE))
DEF_RULE(atom_2b, nc, or(2), rule(yield_expr), rule(testlist_comp))
diff --git a/py/malloc.c b/py/malloc.c
index b0493d9341..c837ed5735 100644
--- a/py/malloc.c
+++ b/py/malloc.c
@@ -114,10 +114,7 @@ void *m_malloc_with_finaliser(size_t num_bytes) {
void *m_malloc0(size_t num_bytes) {
void *ptr = m_malloc(num_bytes);
- if (ptr == NULL && num_bytes != 0) {
- return m_malloc_fail(num_bytes);
- }
- memset(ptr, 0, num_bytes);
+ // memory is already cleared by gc_alloc
return ptr;
}
diff --git a/py/misc.h b/py/misc.h
index 79a4c1c6ef..56ec84ee36 100644
--- a/py/misc.h
+++ b/py/misc.h
@@ -167,6 +167,7 @@ void vstr_add_byte(vstr_t *vstr, byte v);
void vstr_add_char(vstr_t *vstr, unichar chr);
void vstr_add_str(vstr_t *vstr, const char *str);
void vstr_add_strn(vstr_t *vstr, const char *str, size_t len);
+char *vstr_ins_blank_bytes(vstr_t *vstr, size_t byte_pos, size_t byte_len);
void vstr_ins_byte(vstr_t *vstr, size_t byte_pos, byte b);
void vstr_ins_char(vstr_t *vstr, size_t char_pos, unichar chr);
void vstr_cut_head_bytes(vstr_t *vstr, size_t bytes_to_cut);
diff --git a/py/parse.h b/py/parse.h
index f518b9bb66..c4ac15ffcf 100644
--- a/py/parse.h
+++ b/py/parse.h
@@ -23,6 +23,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
+#include "py/parse2.h"
#ifndef __MICROPY_INCLUDED_PY_PARSE_H__
#define __MICROPY_INCLUDED_PY_PARSE_H__
diff --git a/py/parse2.c b/py/parse2.c
new file mode 100644
index 0000000000..06b518784f
--- /dev/null
+++ b/py/parse2.c
@@ -0,0 +1,1433 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2013-2016 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+
+#include "py/nlr.h"
+#include "py/lexer.h"
+#include "py/parse.h"
+#include "py/parsenum.h"
+#include "py/smallint.h"
+
+#define RULE_ACT_ARG_MASK (0x0f)
+#define RULE_ACT_KIND_MASK (0x30)
+#define RULE_ACT_ALLOW_IDENT (0x40)
+#define RULE_ACT_ADD_BLANK (0x80)
+#define RULE_ACT_OR (0x10)
+#define RULE_ACT_AND (0x20)
+#define RULE_ACT_LIST (0x30)
+
+#define RULE_ARG_KIND_MASK (0xf000)
+#define RULE_ARG_ARG_MASK (0x0fff)
+#define RULE_ARG_TOK (0x1000)
+#define RULE_ARG_RULE (0x2000)
+#define RULE_ARG_OPT_RULE (0x3000)
+
+#define ADD_BLANK_NODE(rule) ((rule->act & RULE_ACT_ADD_BLANK) != 0)
+
+// (un)comment to use rule names; for debugging
+//#define USE_RULE_NAME (1)
+
+typedef struct _rule_t {
+ byte rule_id;
+ byte act;
+#ifdef USE_RULE_NAME
+ const char *rule_name;
+#endif
+ uint16_t arg[];
+} rule_t;
+
+enum {
+#define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
+#include "py/grammar.h"
+#undef DEF_RULE
+ RULE_maximum_number_of,
+};
+
+#define ident (RULE_ACT_ALLOW_IDENT)
+#define blank (RULE_ACT_ADD_BLANK)
+#define or(n) (RULE_ACT_OR | n)
+#define and(n) (RULE_ACT_AND | n)
+#define one_or_more (RULE_ACT_LIST | 2)
+#define list (RULE_ACT_LIST | 1)
+#define list_with_end (RULE_ACT_LIST | 3)
+#define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t)
+#define rule(r) (RULE_ARG_RULE | RULE_##r)
+#define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r)
+#ifdef USE_RULE_NAME
+#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } };
+#else
+#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } };
+#endif
+#include "py/grammar.h"
+#undef or
+#undef and
+#undef list
+#undef list_with_end
+#undef tok
+#undef rule
+#undef opt_rule
+#undef one_or_more
+#undef DEF_RULE
+
+STATIC const rule_t *rules[] = {
+#define DEF_RULE(rule, comp, kind, ...) &rule_##rule,
+#include "py/grammar.h"
+#undef DEF_RULE
+};
+
+typedef struct _rule_stack_t {
+ size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
+ size_t rule_id : 8; // this must be large enough to fit largest rule number
+ size_t arg_i; // this dictates the maximum nodes in a "list" of things
+ size_t pt_off;
+} rule_stack_t;
+
+typedef struct _mp_parse_chunk_t {
+ size_t alloc;
+ union {
+ size_t used;
+ struct _mp_parse_chunk_t *next;
+ } union_;
+ byte data[];
+} mp_parse_chunk_t;
+
+typedef enum {
+ PARSE_ERROR_NONE = 0,
+ PARSE_ERROR_MEMORY,
+ PARSE_ERROR_CONST,
+} parse_error_t;
+
+typedef struct _parser_t {
+ parse_error_t parse_error;
+
+ size_t rule_stack_alloc;
+ size_t rule_stack_top;
+ rule_stack_t *rule_stack;
+
+ mp_uint_t cur_scope_id;
+
+ size_t co_alloc;
+ size_t co_used;
+ mp_uint_t *co_data;
+
+ mp_lexer_t *lexer;
+
+ mp_parse_tree_t tree;
+
+ #if MICROPY_COMP_CONST
+ mp_map_t consts;
+ #endif
+} parser_t;
+
+STATIC void push_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t arg_i, size_t pt_off) {
+ if (parser->parse_error) {
+ return;
+ }
+ if (parser->rule_stack_top >= parser->rule_stack_alloc) {
+ rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC, true);
+ if (rs == NULL) {
+ parser->parse_error = PARSE_ERROR_MEMORY;
+ return;
+ }
+ parser->rule_stack = rs;
+ parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
+ }
+ rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
+ rs->src_line = src_line;
+ rs->rule_id = rule->rule_id;
+ rs->arg_i = arg_i;
+ rs->pt_off = pt_off;
+}
+
+STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
+ assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
+ size_t rule_id = arg & RULE_ARG_ARG_MASK;
+ assert(rule_id < RULE_maximum_number_of);
+ push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0, 0);
+}
+
+STATIC void pop_rule(parser_t *parser, const rule_t **rule, size_t *arg_i, size_t *src_line, size_t *pt_off) {
+ assert(!parser->parse_error);
+ parser->rule_stack_top -= 1;
+ *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id];
+ *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
+ *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
+ *pt_off = parser->rule_stack[parser->rule_stack_top].pt_off;
+}
+
+typedef struct _pt_t {
+ vstr_t vv;
+} pt_t;
+
+STATIC pt_t *pt_new(void) {
+ pt_t *pt = m_new_obj(pt_t);
+ vstr_init(&pt->vv, 16);
+ return pt;
+}
+
+STATIC byte *pt_raw_add_blank(pt_t *pt, size_t nbytes) {
+ return (byte*)vstr_add_len(&pt->vv, nbytes);
+}
+
+STATIC byte *pt_raw_ins_blank(pt_t *pt, size_t pt_off, size_t nbytes) {
+ return (byte*)vstr_ins_blank_bytes(&pt->vv, pt_off, nbytes);
+}
+
+STATIC void pt_raw_truncate_at(pt_t *pt, size_t pt_off) {
+ pt->vv.len = pt_off;
+}
+
+STATIC int vuint_nbytes(size_t val) {
+ int n = 0;
+ do {
+ n += 1;
+ val >>= 7;
+ } while (val != 0);
+ return n;
+}
+
+STATIC void vuint_store(byte *p, int nbytes, size_t val) {
+ p += nbytes;
+ *--p = val & 0x7f;
+ for (--nbytes; nbytes > 0; --nbytes) {
+ val >>= 7;
+ *--p = 0x80 | (val & 0x7f);
+ }
+}
+
+STATIC size_t vuint_load(const byte **p_in) {
+ const byte *p = *p_in;
+ size_t val = 0;
+ do {
+ val = (val << 7) + (*p & 0x7f);
+ } while ((*p++ & 0x80) != 0);
+ *p_in = p;
+ return val;
+}
+
+STATIC byte *pt_advance(const byte *p, bool full_rule) {
+ switch (*p++) {
+ case MP_PT_NULL:
+ break;
+ case MP_PT_TOKEN:
+ p += 1;
+ break;
+ case MP_PT_SMALL_INT:
+ p += BYTES_PER_WORD;
+ break;
+ case MP_PT_STRING:
+ p += 2;
+ break;
+ case MP_PT_BYTES:
+ p += 2;
+ break;
+ case MP_PT_CONST_OBJECT:
+ vuint_load(&p);
+ break;
+ default:
+ if (p[-1] < MP_PT_RULE_BASE) {
+ // MP_PT_ID_BASE
+ p += 1;
+ } else {
+ // MP_PT_RULE_BASE
+ vuint_load(&p);
+ uint32_t n = vuint_load(&p);
+ if (full_rule) {
+ p += n;
+ }
+ }
+ break;
+ }
+ return (byte*)p;
+}
+
+bool mp_parse_node_get_int_maybe(const byte *p, mp_obj_t *o) {
+ if (pt_is_small_int(p)) {
+ *o = MP_OBJ_NEW_SMALL_INT(pt_small_int_value(p));
+ return true;
+ #if 0 // TODO
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
+ // nodes are 32-bit pointers, but need to extract 64-bit object
+ *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
+ #else
+ *o = (mp_obj_t)pns->nodes[0];
+ #endif
+ return MP_OBJ_IS_INT(*o);
+ #endif
+ } else {
+ return false;
+ }
+}
+
+// TODO this could perhaps allow *p to be null and in that case return null?
+const byte *mp_parse_node_extract_list(const byte **p, size_t pn_kind) {
+ if (pt_is_null(*p)) {
+ *p += 1;
+ return *p;
+ } else if (!pt_is_any_rule(*p)) {
+ return pt_advance(*p, true);
+ } else {
+ if (!pt_is_rule(*p, pn_kind)) {
+ return pt_advance(*p, true);
+ } else {
+ const byte *ptop;
+ *p = pt_rule_extract_top(*p, &ptop);
+ return ptop;
+ }
+ }
+}
+
+/*
+const byte *pt_extract_id(const byte *p, qstr *qst) {
+ //assert(*p == MP_PT_ID_BASE);
+ *qst = p[1] | ((p[0] - MP_PT_ID_BASE) << 8);
+ return p + 2;
+}
+*/
+
+const byte *pt_extract_const_obj(const byte *p, size_t *idx) {
+ assert(*p == MP_PT_CONST_OBJECT);
+ p += 1;
+ *idx = vuint_load(&p);
+ return p;
+}
+
+const byte *pt_get_small_int(const byte *p, mp_int_t *val) {
+ assert(*p == MP_PT_SMALL_INT);
+ *val = 0;
+ for (size_t i = 0; i < BYTES_PER_WORD; i++) {
+ *val |= (mp_int_t)*++p << (8 * i);
+ }
+ return p + 1;
+}
+
+mp_int_t pt_small_int_value(const byte *p) {
+ mp_int_t val;
+ pt_get_small_int(p, &val);
+ return val;
+}
+
+int pt_num_nodes(const byte *p, const byte *ptop) {
+ int n = 0;
+ while (p < ptop) {
+ n += 1;
+ p = pt_advance(p, true);
+ }
+ return n;
+}
+
+const byte *pt_next(const byte *p) {
+ return pt_advance(p, true);
+}
+
+const byte *pt_rule_first(const byte *p) {
+ return pt_advance(p, false);
+}
+
+#if 0
+void pt_show(pt_t *pt) {
+ const byte *top = (byte*)pt->vv.buf + pt->vv.len;
+ /*
+ for (const byte *p = (byte*)pt->buf; p < top; ++p) {
+ if ((p - (byte*)pt->buf) % 20 == 0) {
+ printf("\n");
+ }
+ printf("%02x ", *p);
+ }
+ printf("\n");
+ */
+ for (const byte *p = (byte*)pt->vv.buf; p < top;) {
+ printf("%04u ", (uint)(p - (byte*)pt->vv.buf));
+ const byte *p2 = pt_advance(p, false);
+ for (const byte *p3 = p; p3 < p2; ++p3) {
+ printf("%02x ", *p3);
+ }
+ for (int i = 8 - (p2 - p); i > 0; --i) {
+ printf(" ");
+ }
+ switch (*p) {
+ case MP_PT_NULL:
+ printf("NULL\n");
+ break;
+ case MP_PT_TOKEN:
+ printf("TOKEN %u\n", p[1]);
+ break;
+ case MP_PT_SMALL_INT:
+ printf("SMALL_INT " INT_FMT "\n", pt_small_int_value(p));
+ break;
+ case MP_PT_STRING:
+ printf("STRING %s\n", qstr_str(p[1] | (p[2] << 8)));
+ break;
+ case MP_PT_BYTES:
+ printf("BYTES %s\n", qstr_str(p[1] | (p[2] << 8)));
+ break;
+ case MP_PT_CONST_OBJECT:
+ printf("CONST_OBJECT\n");
+ break;
+ default:
+ if (p[0] < MP_PT_RULE_BASE) {
+ // MP_PT_ID_BASE
+ printf("ID %s\n", qstr_str(p[1] | ((p[0] - MP_PT_ID_BASE) << 8)));
+ } else {
+ // MP_PT_RULE_BASE
+ byte rule_id = p[0] - MP_PT_RULE_BASE;
+ const byte *p4 = p + 1;
+ uint32_t src_line = vuint_load(&p4);
+ uint32_t n = vuint_load(&p4);
+ #if USE_RULE_NAME
+ printf("RULE %s line=%u bytes=%u\n", rules[rule_id]->rule_name, src_line, n);
+ #else
+ printf("RULE %d line=%u bytes=%u\n", rule_id, src_line, n);
+ #endif
+ }
+ break;
+ }
+ p = p2;
+ }
+}
+#endif
+
+STATIC void pt_add_null(pt_t *pt) {
+ *pt_raw_add_blank(pt, 1) = MP_PT_NULL;
+}
+
+STATIC void pt_add_kind_byte(pt_t *pt, byte kind, byte b) {
+ byte *buf = pt_raw_add_blank(pt, 2);
+ buf[0] = kind;
+ buf[1] = b;
+}
+
+STATIC void pt_add_kind_qstr(pt_t *pt, byte kind, qstr qst) {
+ if (kind == MP_PT_ID_BASE) {
+ assert((qst >> 12) == 0);
+ byte *buf = pt_raw_add_blank(pt, 2);
+ buf[0] = MP_PT_ID_BASE + (qst >> 8);
+ buf[1] = qst;
+ } else {
+ assert((qst >> 16) == 0);
+ byte *buf = pt_raw_add_blank(pt, 3);
+ buf[0] = kind;
+ buf[1] = qst;
+ buf[2] = qst >> 8;
+ }
+}
+
+// valid for up to BYTES_PER_WORD=8
+const byte pt_const_int0[] = {MP_PT_SMALL_INT, 0, 0, 0, 0, 0, 0, 0, 0};
+
+STATIC void pt_add_kind_int(pt_t *pt, byte kind, mp_int_t val) {
+ byte *buf = pt_raw_add_blank(pt, 1 + BYTES_PER_WORD);
+ buf[0] = kind;
+ for (size_t i = 0; i < BYTES_PER_WORD; ++i) {
+ buf[i + 1] = val;
+ val >>= 8;
+ }
+}
+
+STATIC void pt_del_tail_bytes(pt_t *pt, size_t nbytes) {
+ vstr_cut_tail_bytes(&pt->vv, nbytes);
+}
+
+STATIC const byte *pt_del_byte(pt_t *pt, const byte *p) {
+ vstr_cut_out_bytes(&pt->vv, p - (byte*)pt->vv.buf, 1);
+ return p;
+}
+
+#if MICROPY_COMP_MODULE_CONST
+#include "py/builtin.h"
+STATIC const mp_map_elem_t mp_constants_table[] = {
+ #if MICROPY_PY_UCTYPES
+ { MP_OBJ_NEW_QSTR(MP_QSTR_uctypes), (mp_obj_t)&mp_module_uctypes },
+ #endif
+ // Extra constants as defined by a port
+ MICROPY_PORT_CONSTANTS
+};
+STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
+#endif
+
+#if MICROPY_COMP_CONST_FOLDING
+STATIC bool fold_constants(parser_t *parser, pt_t *pt, size_t pt_off, const rule_t *rule) {
+ (void)parser;
+
+ // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
+ // it does not do partial folding, eg 1 + 2 + x -> 3 + x
+
+ mp_int_t arg0;
+ if (rule->rule_id == RULE_expr
+ || rule->rule_id == RULE_xor_expr
+ || rule->rule_id == RULE_and_expr) {
+ // folding for binary ops: | ^ &
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (rule->rule_id == RULE_expr) {
+ // int | int
+ arg0 |= arg1;
+ } else if (rule->rule_id == RULE_xor_expr) {
+ // int ^ int
+ arg0 ^= arg1;
+ } else if (rule->rule_id == RULE_and_expr) {
+ // int & int
+ arg0 &= arg1;
+ }
+ }
+ } else if (rule->rule_id == RULE_shift_expr
+ || rule->rule_id == RULE_arith_expr
+ || rule->rule_id == RULE_term) {
+ // folding for binary ops: << >> + - * / % //
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (tok == MP_TOKEN_OP_DBL_LESS) {
+ // int << int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD
+ || arg0 > (MP_SMALL_INT_MAX >> arg1)
+ || arg0 < (MP_SMALL_INT_MIN >> arg1)) {
+ return false;
+ }
+ arg0 <<= arg1;
+ } else if (tok == MP_TOKEN_OP_DBL_MORE) {
+ // int >> int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD) {
+ // Shifting to big amounts is underfined behavior
+ // in C and is CPU-dependent; propagate sign bit.
+ arg1 = BITS_PER_WORD - 1;
+ }
+ arg0 >>= arg1;
+ } else if (tok == MP_TOKEN_OP_PLUS) {
+ // int + int
+ arg0 += arg1;
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // int - int
+ arg0 -= arg1;
+ } else if (tok == MP_TOKEN_OP_STAR) {
+ // int * int
+ if (mp_small_int_mul_overflow(arg0, arg1)) {
+ return false;
+ }
+ arg0 *= arg1;
+ } else if (tok == MP_TOKEN_OP_SLASH) {
+ // int / int
+ return false;
+ } else if (tok == MP_TOKEN_OP_PERCENT) {
+ // int % int
+ if (arg1 == 0) {
+ return false;
+ }
+ arg0 = mp_small_int_modulo(arg0, arg1);
+ } else {
+ assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be
+ // int // int
+ if (arg1 == 0) {
+ return false;
+ }
+ arg0 = mp_small_int_floor_divide(arg0, arg1);
+ }
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ return false;
+ }
+ }
+ } else if (rule->rule_id == RULE_factor_2) {
+ // folding for unary ops: + - ~
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ arg0 = pt_small_int_value(p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ // +int
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // -int
+ arg0 = -arg0;
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ return false;
+ }
+ } else {
+ assert(tok == MP_TOKEN_OP_TILDE); // should be
+ // ~int
+ arg0 = ~arg0;
+ }
+
+ #if 0&&MICROPY_COMP_CONST
+ } else if (rule->rule_id == RULE_expr_stmt) {
+ mp_parse_node_t pn1 = peek_result(parser, 0);
+ if (!MP_PARSE_NODE_IS_NULL(pn1)
+ && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
+ // this node is of the form <x> = <y>
+ mp_parse_node_t pn0 = peek_result(parser, 1);
+ if (MP_PARSE_NODE_IS_ID(pn0)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_power)
+ && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
+ && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
+ && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
+ && MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t*)pn1)->nodes[2])
+ ) {
+ // code to assign dynamic constants: id = const(value)
+
+ // get the id
+ qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
+
+ // get the value
+ mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
+ if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) {
+ parser->parse_error = PARSE_ERROR_CONST;
+ return false;
+ }
+ mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value);
+
+ // store the value in the table of dynamic constants
+ mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
+ assert(elem->value == MP_OBJ_NULL);
+ elem->value = MP_OBJ_NEW_SMALL_INT(value);
+
+ // replace const(value) with value
+ pop_result(parser);
+ push_result_node(parser, pn_value);
+
+ // finished folding this assignment, but we still want it to be part of the tree
+ return false;
+ }
+ }
+ return false;
+ #endif
+
+ #if 0&&MICROPY_COMP_MODULE_CONST
+ } else if (rule->rule_id == RULE_power) {
+ mp_parse_node_t pn0 = peek_result(parser, 2);
+ mp_parse_node_t pn1 = peek_result(parser, 1);
+ mp_parse_node_t pn2 = peek_result(parser, 0);
+ if (!(MP_PARSE_NODE_IS_ID(pn0)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period)
+ && MP_PARSE_NODE_IS_NULL(pn2))) {
+ return false;
+ }
+ // id1.id2
+ // look it up in constant table, see if it can be replaced with an integer
+ mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
+ assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
+ qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
+ qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
+ mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
+ if (elem == NULL) {
+ return false;
+ }
+ mp_obj_t dest[2];
+ mp_load_method_maybe(elem->value, q_attr, dest);
+ if (!(MP_OBJ_IS_SMALL_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) {
+ return false;
+ }
+ arg0 = MP_OBJ_SMALL_INT_VALUE(dest[0]);
+ #endif
+
+ } else {
+ return false;
+ }
+
+ // success folding this rule
+
+ pt_raw_truncate_at(pt, pt_off);
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, arg0);
+
+ return true;
+}
+#endif
+
+STATIC void pt_ins_rule(parser_t *parser, pt_t *pt, size_t pt_off, size_t src_line, const rule_t *rule, size_t num_args) {
+ (void)num_args;
+
+ // optimise away parenthesis around an expression if possible
+ if (rule->rule_id == RULE_atom_paren) {
+ // there should be just 1 arg for this rule
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ if (pt_is_null(p)) {
+ // need to keep parenthesis for ()
+ } else if (pt_is_rule(p, RULE_testlist_comp)) {
+ // need to keep parenthesis for (a, b, ...)
+ } else {
+ // parenthesis around a single expression, so it's just the expression
+ //printf("opt!\n");
+ return;
+ }
+ }
+
+ #if MICROPY_COMP_CONST_FOLDING
+ if (fold_constants(parser, pt, pt_off, rule)) {
+ // we folded this rule so return straight away
+ return;
+ }
+ #endif
+
+#if 0
+ // TODO partial folding, eg 1 + 2 + x -> 3 + x
+ mp_int_t arg0;
+ if (rule->rule_id == RULE_expr
+ || rule->rule_id == RULE_xor_expr
+ || rule->rule_id == RULE_and_expr) {
+ // combined node folding for these rules
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (rule->rule_id == RULE_expr) {
+ // int | int
+ arg0 |= arg1;
+ } else if (rule->rule_id == RULE_xor_expr) {
+ // int ^ int
+ arg0 ^= arg1;
+ } else if (rule->rule_id == RULE_and_expr) {
+ // int & int
+ arg0 &= arg1;
+ }
+ if (!MP_SMALL_INT_FITS(arg0)) { // check needed?
+ goto folding_fail;
+ }
+ }
+ } else if (rule->rule_id == RULE_shift_expr
+ || rule->rule_id == RULE_arith_expr
+ || rule->rule_id == RULE_term) {
+ // combined node folding for these rules
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (tok == MP_TOKEN_OP_DBL_LESS) {
+ // int << int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD
+ || arg0 > (MP_SMALL_INT_MAX >> arg1)
+ || arg0 < (MP_SMALL_INT_MIN >> arg1)) {
+ goto folding_fail;
+ }
+ arg0 <<= arg1;
+ } else if (tok == MP_TOKEN_OP_DBL_MORE) {
+ // int >> int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD) {
+ // Shifting to big amounts is underfined behavior
+ // in C and is CPU-dependent; propagate sign bit.
+ arg1 = BITS_PER_WORD - 1;
+ }
+ arg0 >>= arg1;
+ } else if (tok == MP_TOKEN_OP_PLUS) {
+ // int + int
+ arg0 += arg1;
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // int - int
+ arg0 -= arg1;
+ } else if (tok == MP_TOKEN_OP_STAR) {
+ // int * int
+ if (mp_small_int_mul_overflow(arg0, arg1)) {
+ goto folding_fail;
+ }
+ arg0 *= arg1;
+ } else if (tok == MP_TOKEN_OP_SLASH) {
+ // int / int
+ goto folding_fail;
+ } else if (tok == MP_TOKEN_OP_PERCENT) {
+ // int % int
+ if (arg1 == 0) {
+ goto folding_fail;
+ }
+ arg0 = mp_small_int_modulo(arg0, arg1);
+ } else {
+ assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be
+ // int // int
+ if (arg1 == 0) {
+ goto folding_fail;
+ }
+ arg0 = mp_small_int_floor_divide(arg0, arg1);
+ }
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ goto folding_fail;
+ }
+ }
+ } else if (rule->rule_id == RULE_factor_2) {
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ arg0 = pt_small_int_value(p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ // +int
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // -int
+ arg0 = -arg0;
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ goto folding_fail;
+ }
+ } else {
+ assert(tok == MP_TOKEN_OP_TILDE); // should be
+ // ~int
+ arg0 = ~arg0;
+ }
+ } else {
+ goto folding_fail;
+ }
+
+ // success folding this rule
+ pt_raw_truncate_at(pt, pt_off);
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, arg0);
+ return;
+
+folding_fail:;
+#endif
+
+ int extra_node = 0;
+ /*
+ if (ADD_BLANK_NODE(rule)) {
+ extra_node = 1 + BYTES_PER_WORD; // for small int node
+ }
+ */
+
+ size_t nbytes = pt->vv.len + extra_node - pt_off;
+ int nb1 = vuint_nbytes(src_line);
+ int nb2 = vuint_nbytes(nbytes);
+ byte *dest = (byte*)pt_raw_ins_blank(pt, pt_off, 1 + nb1 + nb2 + extra_node);
+ dest[0] = MP_PT_RULE_BASE + rule->rule_id;
+ vuint_store(dest + 1, nb1, src_line);
+ vuint_store(dest + 1 + nb1, nb2, nbytes);
+
+ // insert small int node for scope index
+ if (extra_node != 0) {
+ dest[1 + nb1 + nb2] = MP_PT_SMALL_INT;
+ size_t val = ++parser->cur_scope_id;
+ for (size_t i = 0; i < BYTES_PER_WORD; ++i) {
+ dest[1 + nb1 + nb2 + 1 + i] = val;
+ val >>= 8;
+ }
+ }
+}
+
+STATIC void make_node_const_object(parser_t *parser, pt_t *pt, mp_obj_t obj) {
+ int nb = vuint_nbytes(parser->co_used);
+ byte *buf = pt_raw_add_blank(pt, 1 + nb);
+ buf[0] = MP_PT_CONST_OBJECT;
+ vuint_store(buf + 1, nb, parser->co_used);
+ if (parser->co_used >= parser->co_alloc) {
+ // TODO use m_renew_maybe
+ size_t alloc = parser->co_alloc + 8;
+ parser->co_data = m_renew(mp_uint_t, parser->co_data, parser->co_alloc, alloc);
+ parser->co_alloc = alloc;
+ }
+ parser->co_data[parser->co_used++] = (mp_uint_t)obj;
+}
+
+STATIC void make_node_string_bytes(parser_t *parser, pt_t *pt, mp_token_kind_t tok, const char *str, size_t len) {
+ mp_obj_t o;
+ if (tok == MP_TOKEN_STRING) {
+ o = mp_obj_new_str(str, len, false);
+ } else {
+ o = mp_obj_new_bytes((const byte*)str, len);
+ }
+ make_node_const_object(parser, pt, o);
+}
+
+STATIC bool pt_add_token(parser_t *parser, pt_t *pt) {
+ mp_lexer_t *lex = parser->lexer;
+ if (lex->tok_kind == MP_TOKEN_NAME) {
+ qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
+ #if MICROPY_COMP_CONST
+ // lookup identifier in table of dynamic constants
+ mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP);
+ if (elem != NULL) {
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value));
+ } else
+ #endif
+ {
+ pt_add_kind_qstr(pt, MP_PT_ID_BASE, id);
+ }
+ } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
+ mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
+ if (MP_OBJ_IS_SMALL_INT(o)) {
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(o));
+ } else {
+ make_node_const_object(parser, pt, o);
+ }
+ } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
+ mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
+ make_node_const_object(parser, pt, o);
+ } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
+ // join adjacent string/bytes literals
+ mp_token_kind_t tok_kind = lex->tok_kind;
+ vstr_t vstr;
+ vstr_init(&vstr, lex->vstr.len);
+ do {
+ vstr_add_strn(&vstr, lex->vstr.buf, lex->vstr.len);
+ mp_lexer_to_next(lex);
+ } while (lex->tok_kind == tok_kind);
+
+ if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
+ return false;
+ }
+
+ // Don't automatically intern all strings/bytes. doc strings (which are usually large)
+ // will be discarded by the compiler, and so we shouldn't intern them.
+ qstr qst = MP_QSTR_NULL;
+ if (vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
+ // intern short strings
+ qst = qstr_from_strn(vstr.buf, vstr.len);
+ } else {
+ // check if this string is already interned
+ qst = qstr_find_strn(vstr.buf, vstr.len);
+ }
+ if (qst != MP_QSTR_NULL) {
+ // qstr exists, make a leaf node
+ pt_add_kind_qstr(pt, tok_kind == MP_TOKEN_STRING ? MP_PT_STRING : MP_PT_BYTES, qst);
+ } else {
+ // not interned, make a node holding a pointer to the string/bytes data
+ make_node_string_bytes(parser, pt, tok_kind, vstr.buf, vstr.len);
+ }
+ vstr_clear(&vstr);
+ return true;
+ } else {
+ pt_add_kind_byte(pt, MP_PT_TOKEN, lex->tok_kind);
+ }
+ mp_lexer_to_next(lex);
+ return true;
+}
+
+const byte *pt_rule_extract_top(const byte *p, const byte **ptop) {
+ assert(*p >= MP_PT_RULE_BASE);
+ p++;
+ vuint_load(&p);
+ size_t nbytes = vuint_load(&p);
+ *ptop = p + nbytes;
+ return p;
+}
+
+const byte *pt_rule_extract(const byte *p, size_t *rule_id, size_t *src_line, const byte **ptop) {
+ assert(*p >= MP_PT_RULE_BASE);
+ *rule_id = *p++ - MP_PT_RULE_BASE;
+ *src_line = vuint_load(&p);
+ size_t nbytes = vuint_load(&p);
+ *ptop = p + nbytes;
+ return p;
+}
+
+bool pt_is_rule_empty(const byte *p) {
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+ return p == ptop;
+}
+
+mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
+
+ // initialise parser and allocate memory for its stacks
+ parser_t parser;
+
+ parser.parse_error = PARSE_ERROR_NONE;
+
+ parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
+ parser.rule_stack_top = 0;
+ parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc);
+
+ parser.cur_scope_id = 0;
+
+ parser.co_alloc = 0;
+ parser.co_used = 0;
+ parser.co_data = NULL;
+
+ parser.lexer = lex;
+
+ parser.tree.chunk = NULL;
+
+ #if MICROPY_COMP_CONST
+ mp_map_init(&parser.consts, 0);
+ #endif
+
+ // check if we could allocate the stacks
+ if (parser.rule_stack == NULL) {
+ goto memory_error;
+ }
+
+ // work out the top-level rule to use, and push it on the stack
+ size_t top_level_rule;
+ switch (input_kind) {
+ case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
+ case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
+ default: top_level_rule = RULE_file_input;
+ }
+ push_rule(&parser, lex->tok_line, rules[top_level_rule], 0, 0);
+
+ // parse!
+
+ size_t n, i; // state for the current rule
+ size_t pt_off = 0; // state for the current rule
+ size_t rule_src_line; // source line for the first token matched by the current rule
+ bool backtrack = false;
+ const rule_t *rule = NULL;
+ pt_t *pt = pt_new();
+
+ for (;;) {
+ next_rule:
+ if (parser.rule_stack_top == 0 || parser.parse_error) {
+ break;
+ }
+
+ pop_rule(&parser, &rule, &i, &rule_src_line, &pt_off);
+ n = rule->act & RULE_ACT_ARG_MASK;
+
+ if (i == 0) {
+ pt_off = pt->vv.len;
+ }
+
+ /*
+ // debugging
+ printf("depth=%d ", parser.rule_stack_top);
+ for (int j = 0; j < parser.rule_stack_top; ++j) {
+ printf(" ");
+ }
+ printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
+ */
+
+ switch (rule->act & RULE_ACT_KIND_MASK) {
+ case RULE_ACT_OR:
+ if (i > 0 && !backtrack) {
+ goto next_rule;
+ } else {
+ backtrack = false;
+ }
+ for (; i < n; ++i) {
+ uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK;
+ if (kind == RULE_ARG_TOK) {
+ if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) {
+ if (!pt_add_token(&parser, pt)) {
+ goto syntax_error;
+ }
+ goto next_rule;
+ }
+ } else {
+ assert(kind == RULE_ARG_RULE);
+ if (i + 1 < n) {
+ push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this or-rule
+ }
+ push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule
+ goto next_rule;
+ }
+ }
+ backtrack = true;
+ break;
+
+ case RULE_ACT_AND: {
+
+ // failed, backtrack if we can, else syntax error
+ if (backtrack) {
+ assert(i > 0);
+ if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
+ // an optional rule that failed, so continue with next arg
+ pt_add_null(pt);
+ backtrack = false;
+ } else {
+ // a mandatory rule that failed, so propagate backtrack
+ if (i > 1) {
+ // already eaten tokens so can't backtrack
+ goto syntax_error;
+ } else {
+ goto next_rule;
+ }
+ }
+ }
+
+ // progress through the rule
+ for (; i < n; ++i) {
+ switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
+ case RULE_ARG_TOK: {
+ // need to match a token
+ mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
+ if (lex->tok_kind == tok_kind) {
+ // matched token
+ if (tok_kind == MP_TOKEN_NAME) {
+ pt_add_kind_qstr(pt, MP_PT_ID_BASE, qstr_from_strn(lex->vstr.buf, lex->vstr.len));
+ }
+ if (i == 0 && ADD_BLANK_NODE(rule)) {
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, ++parser.cur_scope_id);
+ }
+ mp_lexer_to_next(lex);
+ } else {
+ // failed to match token
+ if (i > 0) {
+ // already eaten tokens so can't backtrack
+ goto syntax_error;
+ } else {
+ // this rule failed, so backtrack
+ backtrack = true;
+ goto next_rule;
+ }
+ }
+ break;
+ }
+ case RULE_ARG_RULE:
+ case RULE_ARG_OPT_RULE:
+ default:
+ push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this and-rule
+ push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule
+ goto next_rule;
+ }
+ }
+
+ assert(i == n);
+
+ // matched the rule, so now build the corresponding parse_node
+
+ // count number of arguments for the parse_node
+ i = 0;
+ bool emit_rule = false;
+ /*
+ for (size_t x = 0; x < n; ++x) {
+ if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
+ mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
+ if (tok_kind >= MP_TOKEN_NAME) {
+ emit_rule = true;
+ }
+ if (tok_kind == MP_TOKEN_NAME) {
+ // only tokens which were names are pushed to stack
+ i += 1;
+ }
+ } else {
+ // rules are always pushed
+ i += 1;
+ }
+ }
+ */
+ for (size_t x = 0; x < n; ++x) {
+ if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
+ mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
+ if (tok_kind >= MP_TOKEN_NAME) {
+ emit_rule = true;
+ }
+ }
+ }
+ for (const byte *p = (byte*)pt->vv.buf + pt_off; p < (byte*)pt->vv.buf + pt->vv.len;) {
+ i += 1;
+ p = pt_advance(p, true);
+ }
+
+ #if 0 && !MICROPY_ENABLE_DOC_STRING
+ // this code discards lonely statements, such as doc strings
+ if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
+ mp_parse_node_t p = peek_result(&parser, 1);
+ if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) {
+ pop_result(&parser); // MP_PARSE_NODE_NULL
+ mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string
+ if (MP_PARSE_NODE_IS_STRUCT(pn)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
+ m_del(char, (char*)pns->nodes[0], (mp_uint_t)pns->nodes[1]);
+ }
+ }
+ push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0);
+ break;
+ }
+ }
+ #endif
+
+ // always emit these rules, even if they have only 1 argument
+ if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
+ emit_rule = true;
+ }
+
+ // if a rule has the RULE_ACT_ALLOW_IDENT bit set then this
+ // rule should not be emitted if it has only 1 argument
+ if (rule->act & RULE_ACT_ALLOW_IDENT) {
+ emit_rule = false;
+ }
+
+ // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
+ if (ADD_BLANK_NODE(rule)) {
+ emit_rule = true;
+ // TODO
+ //add_result_node(&parser, MP_PARSE_NODE_NULL);
+ //i += 1;
+ }
+
+ // count number of non-null nodes
+ size_t num_not_null = 0;
+ size_t num_trail_null = 0;
+ { const byte *p = (byte*)pt->vv.buf + pt_off;
+ for (size_t x = 0; x < i; ++x) {
+ if (*p != MP_PT_NULL) {
+ num_not_null += 1;
+ num_trail_null = 0;
+ } else {
+ num_trail_null += 1;
+ }
+ p = pt_advance(p, true);
+ }}
+
+ if (emit_rule || num_not_null != 1) {
+ // need to add rule when num_not_null == 0 for, eg, atom_paren, testlist_comp_3b
+ pt_del_tail_bytes(pt, num_trail_null); // remove trailing null nodes, they are store implicitly
+ pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i - num_trail_null);
+ } else {
+ // single result, leave it on stack
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ for (size_t x = 0; x < i; ++x) {
+ if (*p == MP_PT_NULL) {
+ p = pt_del_byte(pt, p);
+ } else {
+ p = pt_advance(p, true);
+ }
+ }
+ }
+ break;
+ }
+
+ case RULE_ACT_LIST:
+ default: // nothing else
+ {
+ // n=2 is: item item*
+ // n=1 is: item (sep item)*
+ // n=3 is: item (sep item)* [sep]
+ bool had_trailing_sep;
+ if (backtrack) {
+ list_backtrack:
+ had_trailing_sep = false;
+ if (n == 2) {
+ if (i == 1) {
+ // fail on item, first time round; propagate backtrack
+ goto next_rule;
+ } else {
+ // fail on item, in later rounds; finish with this rule
+ backtrack = false;
+ }
+ } else {
+ if (i == 1) {
+ // fail on item, first time round; propagate backtrack
+ goto next_rule;
+ } else if ((i & 1) == 1) {
+ // fail on item, in later rounds; have eaten tokens so can't backtrack
+ if (n == 3) {
+ // list allows trailing separator; finish parsing list
+ had_trailing_sep = true;
+ backtrack = false;
+ } else {
+ // list doesn't allowing trailing separator; fail
+ goto syntax_error;
+ }
+ } else {
+ // fail on separator; finish parsing list
+ backtrack = false;
+ }
+ }
+ } else {
+ for (;;) {
+ size_t arg = rule->arg[i & 1 & n];
+ switch (arg & RULE_ARG_KIND_MASK) {
+ case RULE_ARG_TOK:
+ if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
+ if (i & 1 & n) {
+ // separators which are tokens are not pushed to result stack
+ mp_lexer_to_next(lex);
+ } else {
+ pt_add_token(&parser, pt);
+ }
+ // got element of list, so continue parsing list
+ i += 1;
+ } else {
+ // couldn't get element of list
+ i += 1;
+ backtrack = true;
+ goto list_backtrack;
+ }
+ break;
+ case RULE_ARG_RULE:
+ rule_list_no_other_choice:
+ push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this list-rule
+ push_rule_from_arg(&parser, arg); // push child of list-rule
+ goto next_rule;
+ default:
+ assert(0);
+ goto rule_list_no_other_choice; // to help flow control analysis
+ }
+ }
+ }
+ assert(i >= 1);
+
+ // compute number of elements in list, result in i
+ i -= 1;
+ if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
+ // don't count separators when they are tokens
+ i = (i + 1) / 2;
+ }
+
+ if (i == 1) {
+ // list matched single item
+ if (had_trailing_sep) {
+ // if there was a trailing separator, make a list of a single item
+ pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i);
+ } else {
+ // just leave single item on stack (ie don't wrap in a list)
+ }
+ } else {
+ pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i);
+ }
+ break;
+ }
+ }
+ }
+
+ #if MICROPY_COMP_CONST
+ mp_map_deinit(&parser.consts);
+ #endif
+
+ #if 0
+ pt_show(pt);
+
+ {
+ size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
+ qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
+ printf("qstr pool: n_pool=" UINT_FMT ", n_qstr=" UINT_FMT ", n_str_data_bytes="
+ UINT_FMT ", n_total_bytes=" UINT_FMT "\n",
+ n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
+ }
+ #endif
+
+ mp_obj_t exc;
+
+ if (parser.parse_error) {
+ #if MICROPY_COMP_CONST
+ if (parser.parse_error == PARSE_ERROR_CONST) {
+ exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
+ "constant must be an integer");
+ } else
+ #endif
+ {
+ assert(parser.parse_error == PARSE_ERROR_MEMORY);
+ memory_error:
+ exc = mp_obj_new_exception_msg(&mp_type_MemoryError,
+ "parser could not allocate enough memory");
+ }
+ parser.tree.root = NULL;
+ } else if (
+ lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
+ || pt->vv.len == 0 // check that we got a node (can fail on empty input)
+ ) {
+ syntax_error:
+ if (lex->tok_kind == MP_TOKEN_INDENT) {
+ exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
+ "unexpected indent");
+ } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
+ exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
+ "unindent does not match any outer indentation level");
+ } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
+ exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
+ "cannot mix bytes and nonbytes literals");
+ } else {
+ exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
+ "invalid syntax");
+ }
+ parser.tree.root = NULL;
+ } else {
+ // no errors
+
+ //result_stack_show(parser);
+ //printf("rule stack alloc: %d\n", parser.rule_stack_alloc);
+ //printf("result stack alloc: %d\n", parser.result_stack_alloc);
+ //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);
+
+ // add number of scopes
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, parser.cur_scope_id + 1);
+
+ // get the root parse node that we created
+ //assert(parser.result_stack_top == 1);
+ exc = MP_OBJ_NULL;
+ parser.tree.root = (byte*)pt->vv.buf;
+ parser.tree.co_data = parser.co_data;
+ }
+
+ // free the memory that we don't need anymore
+ m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
+ // we also free the lexer on behalf of the caller (see below)
+
+ if (exc != MP_OBJ_NULL) {
+ // had an error so raise the exception
+ // add traceback to give info about file name and location
+ // we don't have a 'block' name, so just pass the NULL qstr to indicate this
+ mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
+ mp_lexer_free(lex);
+ nlr_raise(exc);
+ } else {
+ mp_lexer_free(lex);
+ return parser.tree;
+ }
+}
+
+void mp_parse_tree_clear(mp_parse_tree_t *tree) {
+ mp_parse_chunk_t *chunk = tree->chunk;
+ while (chunk != NULL) {
+ mp_parse_chunk_t *next = chunk->union_.next;
+ m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
+ chunk = next;
+ }
+}
diff --git a/py/parse2.h b/py/parse2.h
new file mode 100644
index 0000000000..f50af0df45
--- /dev/null
+++ b/py/parse2.h
@@ -0,0 +1,133 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2013-2016 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#ifndef __MICROPY_INCLUDED_PY_PARSE_H__
+#define __MICROPY_INCLUDED_PY_PARSE_H__
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "py/obj.h"
+
+struct _mp_lexer_t;
+
+#define MP_PT_NULL (0)
+#define MP_PT_TOKEN (1)
+#define MP_PT_SMALL_INT (3)
+#define MP_PT_STRING (4)
+#define MP_PT_BYTES (5)
+#define MP_PT_CONST_OBJECT (8)
+#define MP_PT_ID_BASE (10) // +16
+#define MP_PT_RULE_BASE (26) // +173-ish
+
+extern const byte pt_const_int0[];
+
+static inline const byte *pt_tok_extract(const byte *p, byte *tok) {
+ //assert(*p == MP_PT_TOKEN);
+ p += 1;
+ *tok = *p++;
+ return p;
+}
+
+static inline bool pt_is_null(const byte *p) {
+ return *p == MP_PT_NULL;
+}
+
+static inline bool pt_is_null_with_top(const byte *p, const byte *ptop) {
+ return p == ptop || *p == MP_PT_NULL;
+}
+
+static inline bool pt_is_small_int(const byte *p) {
+ return *p == MP_PT_SMALL_INT;
+}
+
+static inline bool pt_is_any_rule(const byte *p) {
+ return *p >= MP_PT_RULE_BASE;
+}
+
+static inline mp_uint_t pt_rule_extract_rule_id(const byte *p) {
+ return *p - MP_PT_RULE_BASE;
+}
+
+static inline bool pt_is_any_id(const byte *p) {
+ return *p >= MP_PT_ID_BASE && *p < MP_PT_RULE_BASE;
+}
+
+static inline bool pt_is_id(const byte *p, qstr qst) {
+ //assert(*p == MP_PT_ID_BASE);
+ return qst == ((mp_uint_t)p[1] | (((mp_uint_t)p[0] - MP_PT_ID_BASE) << 8));
+}
+
+static inline bool pt_is_any_tok(const byte *p) {
+ return p[0] == MP_PT_TOKEN;
+}
+
+static inline bool pt_is_tok(const byte *p, int tok) {
+ return p[0] == MP_PT_TOKEN && p[1] == tok;
+}
+
+static inline bool pt_is_rule(const byte *p, int rule) {
+ return *p == MP_PT_RULE_BASE + rule;
+}
+
+int pt_num_nodes(const byte *p, const byte *ptop);
+const byte *pt_next(const byte *p);
+
+//const byte *pt_extract_id(const byte *p, qstr *qst);
+static inline const byte *pt_extract_id(const byte *p, qstr *qst) {
+ //assert(*p == MP_PT_ID_BASE);
+ *qst = p[1] | ((p[0] - MP_PT_ID_BASE) << 8);
+ return p + 2;
+}
+
+const byte *pt_extract_const_obj(const byte *p, mp_uint_t *idx);
+mp_int_t pt_small_int_value(const byte *p);
+const byte *pt_get_small_int(const byte *p, mp_int_t *val);
+const byte *pt_rule_first(const byte *p);
+const byte *pt_rule_extract_top(const byte *p, const byte **ptop);
+const byte *pt_rule_extract(const byte *p, mp_uint_t *rule_id, size_t *src_line, const byte **ptop);
+bool pt_is_rule_empty(const byte *p);
+
+bool mp_parse_node_get_int_maybe(const byte *p, mp_obj_t *o);
+const byte *mp_parse_node_extract_list(const byte **p, mp_uint_t pn_kind);
+
+typedef enum {
+ MP_PARSE_SINGLE_INPUT,
+ MP_PARSE_FILE_INPUT,
+ MP_PARSE_EVAL_INPUT,
+} mp_parse_input_kind_t;
+
+typedef struct _mp_parse_t {
+ const byte *root;
+ mp_uint_t *co_data;
+ struct _mp_parse_chunk_t *chunk;
+} mp_parse_tree_t;
+
+// the parser will raise an exception if an error occurred
+// the parser will free the lexer before it returns
+mp_parse_tree_t mp_parse(struct _mp_lexer_t *lex, mp_parse_input_kind_t input_kind);
+void mp_parse_tree_clear(mp_parse_tree_t *tree);
+
+#endif // __MICROPY_INCLUDED_PY_PARSE_H__
diff --git a/py/py.mk b/py/py.mk
index 5147c99500..db173156ed 100644
--- a/py/py.mk
+++ b/py/py.mk
@@ -81,9 +81,9 @@ PY_O_BASENAME = \
lexer.o \
lexerstr.o \
lexerunix.o \
- parse.o \
+ parse2.o \
scope.o \
- compile.o \
+ compile2.o \
emitcommon.o \
emitbc.o \
asmx64.o \
diff --git a/py/scope.c b/py/scope.c
index 632e527521..e408251733 100644
--- a/py/scope.c
+++ b/py/scope.c
@@ -30,7 +30,7 @@
#if MICROPY_ENABLE_COMPILER
-scope_t *scope_new(scope_kind_t kind, mp_parse_node_t pn, qstr source_file, mp_uint_t emit_options) {
+scope_t *scope_new(scope_kind_t kind, const byte *pn, qstr source_file, mp_uint_t emit_options) {
scope_t *scope = m_new0(scope_t, 1);
scope->kind = kind;
scope->pn = pn;
@@ -41,8 +41,7 @@ scope_t *scope_new(scope_kind_t kind, mp_parse_node_t pn, qstr source_file, mp_u
break;
case SCOPE_FUNCTION:
case SCOPE_CLASS:
- assert(MP_PARSE_NODE_IS_STRUCT(pn));
- scope->simple_name = MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn)->nodes[0]);
+ pt_extract_id(pn, &scope->simple_name); // function name
break;
case SCOPE_LAMBDA:
scope->simple_name = MP_QSTR__lt_lambda_gt_;
@@ -62,7 +61,6 @@ scope_t *scope_new(scope_kind_t kind, mp_parse_node_t pn, qstr source_file, mp_u
default:
assert(0);
}
- scope->raw_code = mp_emit_glue_new_raw_code();
scope->emit_options = emit_options;
scope->id_info_alloc = MICROPY_ALLOC_SCOPE_ID_INIT;
scope->id_info = m_new(id_info_t, scope->id_info_alloc);
diff --git a/py/scope.h b/py/scope.h
index fac936a729..e210a5a9cf 100644
--- a/py/scope.h
+++ b/py/scope.h
@@ -57,8 +57,7 @@ typedef enum { SCOPE_MODULE, SCOPE_FUNCTION, SCOPE_LAMBDA, SCOPE_LIST_COMP, SCOP
typedef struct _scope_t {
scope_kind_t kind;
struct _scope_t *parent;
- struct _scope_t *next;
- mp_parse_node_t pn;
+ const byte *pn; // points to the node after the scope index node
qstr source_file;
qstr simple_name;
mp_raw_code_t *raw_code;
@@ -75,7 +74,7 @@ typedef struct _scope_t {
id_info_t *id_info;
} scope_t;
-scope_t *scope_new(scope_kind_t kind, mp_parse_node_t pn, qstr source_file, mp_uint_t emit_options);
+scope_t *scope_new(scope_kind_t kind, const byte *pn, qstr source_file, mp_uint_t emit_options);
void scope_free(scope_t *scope);
id_info_t *scope_find_or_add_id(scope_t *scope, qstr qstr, bool *added);
id_info_t *scope_find(scope_t *scope, qstr qstr);
diff --git a/py/vstr.c b/py/vstr.c
index 3367ae581d..181b1c49b9 100644
--- a/py/vstr.c
+++ b/py/vstr.c
@@ -151,7 +151,7 @@ STATIC bool vstr_ensure_extra(vstr_t *vstr, size_t size) {
if (vstr->fixed_buf) {
return false;
}
- size_t new_alloc = ROUND_ALLOC((vstr->len + size) * 2);
+ size_t new_alloc = ROUND_ALLOC((vstr->len + size) + 64);
char *new_buf = m_renew(char, vstr->buf, vstr->alloc, new_alloc);
if (new_buf == NULL) {
vstr->had_error = true;
@@ -256,7 +256,7 @@ copy:
vstr->len += len;
}
-STATIC char *vstr_ins_blank_bytes(vstr_t *vstr, size_t byte_pos, size_t byte_len) {
+char *vstr_ins_blank_bytes(vstr_t *vstr, size_t byte_pos, size_t byte_len) {
if (vstr->had_error) {
return NULL;
}