summaryrefslogtreecommitdiffstatshomepage
path: root/py/parse2.c
diff options
context:
space:
mode:
Diffstat (limited to 'py/parse2.c')
-rw-r--r--py/parse2.c1433
1 files changed, 1433 insertions, 0 deletions
diff --git a/py/parse2.c b/py/parse2.c
new file mode 100644
index 0000000000..0e729c6dde
--- /dev/null
+++ b/py/parse2.c
@@ -0,0 +1,1433 @@
+/*
+ * This file is part of the MicroPython project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2013-2016 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+
+#include "py/nlr.h"
+#include "py/lexer.h"
+#include "py/parse.h"
+#include "py/parsenum.h"
+#include "py/smallint.h"
+
+#define RULE_ACT_ARG_MASK (0x0f)
+#define RULE_ACT_KIND_MASK (0x30)
+#define RULE_ACT_ALLOW_IDENT (0x40)
+#define RULE_ACT_ADD_BLANK (0x80)
+#define RULE_ACT_OR (0x10)
+#define RULE_ACT_AND (0x20)
+#define RULE_ACT_LIST (0x30)
+
+#define RULE_ARG_KIND_MASK (0xf000)
+#define RULE_ARG_ARG_MASK (0x0fff)
+#define RULE_ARG_TOK (0x1000)
+#define RULE_ARG_RULE (0x2000)
+#define RULE_ARG_OPT_RULE (0x3000)
+
+#define ADD_BLANK_NODE(rule) ((rule->act & RULE_ACT_ADD_BLANK) != 0)
+
+// (un)comment to use rule names; for debugging
+//#define USE_RULE_NAME (1)
+
+typedef struct _rule_t {
+ byte rule_id;
+ byte act;
+#ifdef USE_RULE_NAME
+ const char *rule_name;
+#endif
+ uint16_t arg[];
+} rule_t;
+
+enum {
+#define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
+#include "py/grammar.h"
+#undef DEF_RULE
+ RULE_maximum_number_of,
+};
+
+#define or(n) (RULE_ACT_OR | n)
+#define and(n) (RULE_ACT_AND | n)
+#define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
+#define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
+#define one_or_more (RULE_ACT_LIST | 2)
+#define list (RULE_ACT_LIST | 1)
+#define list_with_end (RULE_ACT_LIST | 3)
+#define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t)
+#define rule(r) (RULE_ARG_RULE | RULE_##r)
+#define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r)
+#ifdef USE_RULE_NAME
+#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } };
+#else
+#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } };
+#endif
+#include "py/grammar.h"
+#undef or
+#undef and
+#undef list
+#undef list_with_end
+#undef tok
+#undef rule
+#undef opt_rule
+#undef one_or_more
+#undef DEF_RULE
+
+STATIC const rule_t *rules[] = {
+#define DEF_RULE(rule, comp, kind, ...) &rule_##rule,
+#include "py/grammar.h"
+#undef DEF_RULE
+};
+
+typedef struct _rule_stack_t {
+ size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
+ size_t rule_id : 8; // this must be large enough to fit largest rule number
+ size_t arg_i; // this dictates the maximum nodes in a "list" of things
+ size_t pt_off;
+} rule_stack_t;
+
+typedef struct _mp_parse_chunk_t {
+ size_t alloc;
+ union {
+ size_t used;
+ struct _mp_parse_chunk_t *next;
+ } union_;
+ byte data[];
+} mp_parse_chunk_t;
+
+typedef enum {
+ PARSE_ERROR_NONE = 0,
+ PARSE_ERROR_MEMORY,
+ PARSE_ERROR_CONST,
+} parse_error_t;
+
+typedef struct _parser_t {
+ parse_error_t parse_error;
+
+ size_t rule_stack_alloc;
+ size_t rule_stack_top;
+ rule_stack_t *rule_stack;
+
+ mp_uint_t cur_scope_id;
+
+ size_t co_alloc;
+ size_t co_used;
+ mp_uint_t *co_data;
+
+ mp_lexer_t *lexer;
+
+ mp_parse_tree_t tree;
+
+ #if MICROPY_COMP_CONST
+ mp_map_t consts;
+ #endif
+} parser_t;
+
+STATIC void push_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t arg_i, size_t pt_off) {
+ if (parser->parse_error) {
+ return;
+ }
+ if (parser->rule_stack_top >= parser->rule_stack_alloc) {
+ rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC, true);
+ if (rs == NULL) {
+ parser->parse_error = PARSE_ERROR_MEMORY;
+ return;
+ }
+ parser->rule_stack = rs;
+ parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
+ }
+ rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
+ rs->src_line = src_line;
+ rs->rule_id = rule->rule_id;
+ rs->arg_i = arg_i;
+ rs->pt_off = pt_off;
+}
+
+STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
+ assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
+ size_t rule_id = arg & RULE_ARG_ARG_MASK;
+ assert(rule_id < RULE_maximum_number_of);
+ push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0, 0);
+}
+
+STATIC void pop_rule(parser_t *parser, const rule_t **rule, size_t *arg_i, size_t *src_line, size_t *pt_off) {
+ assert(!parser->parse_error);
+ parser->rule_stack_top -= 1;
+ *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id];
+ *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
+ *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
+ *pt_off = parser->rule_stack[parser->rule_stack_top].pt_off;
+}
+
+typedef struct _pt_t {
+ vstr_t vv;
+} pt_t;
+
+STATIC pt_t *pt_new(void) {
+ pt_t *pt = m_new_obj(pt_t);
+ vstr_init(&pt->vv, 16);
+ return pt;
+}
+
+STATIC byte *pt_raw_add_blank(pt_t *pt, size_t nbytes) {
+ return (byte*)vstr_add_len(&pt->vv, nbytes);
+}
+
+STATIC byte *pt_raw_ins_blank(pt_t *pt, size_t pt_off, size_t nbytes) {
+ return (byte*)vstr_ins_blank_bytes(&pt->vv, pt_off, nbytes);
+}
+
+STATIC void pt_raw_truncate_at(pt_t *pt, size_t pt_off) {
+ pt->vv.len = pt_off;
+}
+
+STATIC int vuint_nbytes(size_t val) {
+ int n = 0;
+ do {
+ n += 1;
+ val >>= 7;
+ } while (val != 0);
+ return n;
+}
+
+STATIC void vuint_store(byte *p, int nbytes, size_t val) {
+ p += nbytes;
+ *--p = val & 0x7f;
+ for (--nbytes; nbytes > 0; --nbytes) {
+ val >>= 7;
+ *--p = 0x80 | (val & 0x7f);
+ }
+}
+
+STATIC size_t vuint_load(const byte **p_in) {
+ const byte *p = *p_in;
+ size_t val = 0;
+ do {
+ val = (val << 7) + (*p & 0x7f);
+ } while ((*p++ & 0x80) != 0);
+ *p_in = p;
+ return val;
+}
+
+STATIC byte *pt_advance(const byte *p, bool full_rule) {
+ switch (*p++) {
+ case MP_PT_NULL:
+ break;
+ case MP_PT_TOKEN:
+ p += 1;
+ break;
+ case MP_PT_SMALL_INT:
+ p += BYTES_PER_WORD;
+ break;
+ case MP_PT_STRING:
+ p += 2;
+ break;
+ case MP_PT_BYTES:
+ p += 2;
+ break;
+ case MP_PT_CONST_OBJECT:
+ vuint_load(&p);
+ break;
+ default:
+ if (p[-1] < MP_PT_RULE_BASE) {
+ // MP_PT_ID_BASE
+ p += 1;
+ } else {
+ // MP_PT_RULE_BASE
+ vuint_load(&p);
+ uint32_t n = vuint_load(&p);
+ if (full_rule) {
+ p += n;
+ }
+ }
+ break;
+ }
+ return (byte*)p;
+}
+
+bool mp_parse_node_get_int_maybe(const byte *p, mp_obj_t *o) {
+ if (pt_is_small_int(p)) {
+ *o = MP_OBJ_NEW_SMALL_INT(pt_small_int_value(p));
+ return true;
+ #if 0 // TODO
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
+ // nodes are 32-bit pointers, but need to extract 64-bit object
+ *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
+ #else
+ *o = (mp_obj_t)pns->nodes[0];
+ #endif
+ return MP_OBJ_IS_INT(*o);
+ #endif
+ } else {
+ return false;
+ }
+}
+
+// TODO this could perhaps allow *p to be null and in that case return null?
+const byte *mp_parse_node_extract_list(const byte **p, size_t pn_kind) {
+ if (pt_is_null(*p)) {
+ *p += 1;
+ return *p;
+ } else if (!pt_is_any_rule(*p)) {
+ return pt_advance(*p, true);
+ } else {
+ if (!pt_is_rule(*p, pn_kind)) {
+ return pt_advance(*p, true);
+ } else {
+ const byte *ptop;
+ *p = pt_rule_extract_top(*p, &ptop);
+ return ptop;
+ }
+ }
+}
+
+/*
+const byte *pt_extract_id(const byte *p, qstr *qst) {
+ //assert(*p == MP_PT_ID_BASE);
+ *qst = p[1] | ((p[0] - MP_PT_ID_BASE) << 8);
+ return p + 2;
+}
+*/
+
+const byte *pt_extract_const_obj(const byte *p, size_t *idx) {
+ assert(*p == MP_PT_CONST_OBJECT);
+ p += 1;
+ *idx = vuint_load(&p);
+ return p;
+}
+
+const byte *pt_get_small_int(const byte *p, mp_int_t *val) {
+ assert(*p == MP_PT_SMALL_INT);
+ *val = 0;
+ for (size_t i = 0; i < BYTES_PER_WORD; i++) {
+ *val |= (mp_int_t)*++p << (8 * i);
+ }
+ return p + 1;
+}
+
+mp_int_t pt_small_int_value(const byte *p) {
+ mp_int_t val;
+ pt_get_small_int(p, &val);
+ return val;
+}
+
+int pt_num_nodes(const byte *p, const byte *ptop) {
+ int n = 0;
+ while (p < ptop) {
+ n += 1;
+ p = pt_advance(p, true);
+ }
+ return n;
+}
+
+const byte *pt_next(const byte *p) {
+ return pt_advance(p, true);
+}
+
+const byte *pt_rule_first(const byte *p) {
+ return pt_advance(p, false);
+}
+
+#if 0
+void pt_show(pt_t *pt) {
+ const byte *top = (byte*)pt->vv.buf + pt->vv.len;
+ /*
+ for (const byte *p = (byte*)pt->buf; p < top; ++p) {
+ if ((p - (byte*)pt->buf) % 20 == 0) {
+ printf("\n");
+ }
+ printf("%02x ", *p);
+ }
+ printf("\n");
+ */
+ for (const byte *p = (byte*)pt->vv.buf; p < top;) {
+ printf("%04u ", (uint)(p - (byte*)pt->vv.buf));
+ const byte *p2 = pt_advance(p, false);
+ for (const byte *p3 = p; p3 < p2; ++p3) {
+ printf("%02x ", *p3);
+ }
+ for (int i = 8 - (p2 - p); i > 0; --i) {
+ printf(" ");
+ }
+ switch (*p) {
+ case MP_PT_NULL:
+ printf("NULL\n");
+ break;
+ case MP_PT_TOKEN:
+ printf("TOKEN %u\n", p[1]);
+ break;
+ case MP_PT_SMALL_INT:
+ printf("SMALL_INT " INT_FMT "\n", pt_small_int_value(p));
+ break;
+ case MP_PT_STRING:
+ printf("STRING %s\n", qstr_str(p[1] | (p[2] << 8)));
+ break;
+ case MP_PT_BYTES:
+ printf("BYTES %s\n", qstr_str(p[1] | (p[2] << 8)));
+ break;
+ case MP_PT_CONST_OBJECT:
+ printf("CONST_OBJECT\n");
+ break;
+ default:
+ if (p[0] < MP_PT_RULE_BASE) {
+ // MP_PT_ID_BASE
+ printf("ID %s\n", qstr_str(p[1] | ((p[0] - MP_PT_ID_BASE) << 8)));
+ } else {
+ // MP_PT_RULE_BASE
+ byte rule_id = p[0] - MP_PT_RULE_BASE;
+ const byte *p4 = p + 1;
+ uint32_t src_line = vuint_load(&p4);
+ uint32_t n = vuint_load(&p4);
+ #if USE_RULE_NAME
+ printf("RULE %s line=%u bytes=%u\n", rules[rule_id]->rule_name, src_line, n);
+ #else
+ printf("RULE %d line=%u bytes=%u\n", rule_id, src_line, n);
+ #endif
+ }
+ break;
+ }
+ p = p2;
+ }
+}
+#endif
+
+STATIC void pt_add_null(pt_t *pt) {
+ *pt_raw_add_blank(pt, 1) = MP_PT_NULL;
+}
+
+STATIC void pt_add_kind_byte(pt_t *pt, byte kind, byte b) {
+ byte *buf = pt_raw_add_blank(pt, 2);
+ buf[0] = kind;
+ buf[1] = b;
+}
+
+STATIC void pt_add_kind_qstr(pt_t *pt, byte kind, qstr qst) {
+ if (kind == MP_PT_ID_BASE) {
+ assert((qst >> 12) == 0);
+ byte *buf = pt_raw_add_blank(pt, 2);
+ buf[0] = MP_PT_ID_BASE + (qst >> 8);
+ buf[1] = qst;
+ } else {
+ assert((qst >> 16) == 0);
+ byte *buf = pt_raw_add_blank(pt, 3);
+ buf[0] = kind;
+ buf[1] = qst;
+ buf[2] = qst >> 8;
+ }
+}
+
+// valid for up to BYTES_PER_WORD=8
+const byte pt_const_int0[] = {MP_PT_SMALL_INT, 0, 0, 0, 0, 0, 0, 0, 0};
+
+STATIC void pt_add_kind_int(pt_t *pt, byte kind, mp_int_t val) {
+ byte *buf = pt_raw_add_blank(pt, 1 + BYTES_PER_WORD);
+ buf[0] = kind;
+ for (size_t i = 0; i < BYTES_PER_WORD; ++i) {
+ buf[i + 1] = val;
+ val >>= 8;
+ }
+}
+
+STATIC void pt_del_tail_bytes(pt_t *pt, size_t nbytes) {
+ vstr_cut_tail_bytes(&pt->vv, nbytes);
+}
+
+STATIC const byte *pt_del_byte(pt_t *pt, const byte *p) {
+ vstr_cut_out_bytes(&pt->vv, p - (byte*)pt->vv.buf, 1);
+ return p;
+}
+
+#if MICROPY_COMP_MODULE_CONST
+#include "py/builtin.h"
+STATIC const mp_map_elem_t mp_constants_table[] = {
+ #if MICROPY_PY_UCTYPES
+ { MP_OBJ_NEW_QSTR(MP_QSTR_uctypes), (mp_obj_t)&mp_module_uctypes },
+ #endif
+ // Extra constants as defined by a port
+ MICROPY_PORT_CONSTANTS
+};
+STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
+#endif
+
+#if MICROPY_COMP_CONST_FOLDING
+STATIC bool fold_constants(parser_t *parser, pt_t *pt, size_t pt_off, const rule_t *rule) {
+ (void)parser;
+
+ // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
+ // it does not do partial folding, eg 1 + 2 + x -> 3 + x
+
+ mp_int_t arg0;
+ if (rule->rule_id == RULE_expr
+ || rule->rule_id == RULE_xor_expr
+ || rule->rule_id == RULE_and_expr) {
+ // folding for binary ops: | ^ &
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (rule->rule_id == RULE_expr) {
+ // int | int
+ arg0 |= arg1;
+ } else if (rule->rule_id == RULE_xor_expr) {
+ // int ^ int
+ arg0 ^= arg1;
+ } else if (rule->rule_id == RULE_and_expr) {
+ // int & int
+ arg0 &= arg1;
+ }
+ }
+ } else if (rule->rule_id == RULE_shift_expr
+ || rule->rule_id == RULE_arith_expr
+ || rule->rule_id == RULE_term) {
+ // folding for binary ops: << >> + - * / % //
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (tok == MP_TOKEN_OP_DBL_LESS) {
+ // int << int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD
+ || arg0 > (MP_SMALL_INT_MAX >> arg1)
+ || arg0 < (MP_SMALL_INT_MIN >> arg1)) {
+ return false;
+ }
+ arg0 <<= arg1;
+ } else if (tok == MP_TOKEN_OP_DBL_MORE) {
+ // int >> int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD) {
+ // Shifting to big amounts is underfined behavior
+ // in C and is CPU-dependent; propagate sign bit.
+ arg1 = BITS_PER_WORD - 1;
+ }
+ arg0 >>= arg1;
+ } else if (tok == MP_TOKEN_OP_PLUS) {
+ // int + int
+ arg0 += arg1;
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // int - int
+ arg0 -= arg1;
+ } else if (tok == MP_TOKEN_OP_STAR) {
+ // int * int
+ if (mp_small_int_mul_overflow(arg0, arg1)) {
+ return false;
+ }
+ arg0 *= arg1;
+ } else if (tok == MP_TOKEN_OP_SLASH) {
+ // int / int
+ return false;
+ } else if (tok == MP_TOKEN_OP_PERCENT) {
+ // int % int
+ if (arg1 == 0) {
+ return false;
+ }
+ arg0 = mp_small_int_modulo(arg0, arg1);
+ } else {
+ assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be
+ // int // int
+ if (arg1 == 0) {
+ return false;
+ }
+ arg0 = mp_small_int_floor_divide(arg0, arg1);
+ }
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ return false;
+ }
+ }
+ } else if (rule->rule_id == RULE_factor_2) {
+ // folding for unary ops: + - ~
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ return false;
+ }
+ arg0 = pt_small_int_value(p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ // +int
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // -int
+ arg0 = -arg0;
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ return false;
+ }
+ } else {
+ assert(tok == MP_TOKEN_OP_TILDE); // should be
+ // ~int
+ arg0 = ~arg0;
+ }
+
+ #if 0&&MICROPY_COMP_CONST
+ } else if (rule->rule_id == RULE_expr_stmt) {
+ mp_parse_node_t pn1 = peek_result(parser, 0);
+ if (!MP_PARSE_NODE_IS_NULL(pn1)
+ && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
+ // this node is of the form <x> = <y>
+ mp_parse_node_t pn0 = peek_result(parser, 1);
+ if (MP_PARSE_NODE_IS_ID(pn0)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_power)
+ && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
+ && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
+ && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
+ && MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t*)pn1)->nodes[2])
+ ) {
+ // code to assign dynamic constants: id = const(value)
+
+ // get the id
+ qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
+
+ // get the value
+ mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
+ if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) {
+ parser->parse_error = PARSE_ERROR_CONST;
+ return false;
+ }
+ mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value);
+
+ // store the value in the table of dynamic constants
+ mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
+ assert(elem->value == MP_OBJ_NULL);
+ elem->value = MP_OBJ_NEW_SMALL_INT(value);
+
+ // replace const(value) with value
+ pop_result(parser);
+ push_result_node(parser, pn_value);
+
+ // finished folding this assignment, but we still want it to be part of the tree
+ return false;
+ }
+ }
+ return false;
+ #endif
+
+ #if 0&&MICROPY_COMP_MODULE_CONST
+ } else if (rule->rule_id == RULE_power) {
+ mp_parse_node_t pn0 = peek_result(parser, 2);
+ mp_parse_node_t pn1 = peek_result(parser, 1);
+ mp_parse_node_t pn2 = peek_result(parser, 0);
+ if (!(MP_PARSE_NODE_IS_ID(pn0)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period)
+ && MP_PARSE_NODE_IS_NULL(pn2))) {
+ return false;
+ }
+ // id1.id2
+ // look it up in constant table, see if it can be replaced with an integer
+ mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
+ assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
+ qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
+ qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
+ mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
+ if (elem == NULL) {
+ return false;
+ }
+ mp_obj_t dest[2];
+ mp_load_method_maybe(elem->value, q_attr, dest);
+ if (!(MP_OBJ_IS_SMALL_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) {
+ return false;
+ }
+ arg0 = MP_OBJ_SMALL_INT_VALUE(dest[0]);
+ #endif
+
+ } else {
+ return false;
+ }
+
+ // success folding this rule
+
+ pt_raw_truncate_at(pt, pt_off);
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, arg0);
+
+ return true;
+}
+#endif
+
+STATIC void pt_ins_rule(parser_t *parser, pt_t *pt, size_t pt_off, size_t src_line, const rule_t *rule, size_t num_args) {
+ (void)num_args;
+
+ // optimise away parenthesis around an expression if possible
+ if (rule->rule_id == RULE_atom_paren) {
+ // there should be just 1 arg for this rule
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ if (pt_is_null(p)) {
+ // need to keep parenthesis for ()
+ } else if (pt_is_rule(p, RULE_testlist_comp)) {
+ // need to keep parenthesis for (a, b, ...)
+ } else {
+ // parenthesis around a single expression, so it's just the expression
+ //printf("opt!\n");
+ return;
+ }
+ }
+
+ #if MICROPY_COMP_CONST_FOLDING
+ if (fold_constants(parser, pt, pt_off, rule)) {
+ // we folded this rule so return straight away
+ return;
+ }
+ #endif
+
+#if 0
+ // TODO partial folding, eg 1 + 2 + x -> 3 + x
+ mp_int_t arg0;
+ if (rule->rule_id == RULE_expr
+ || rule->rule_id == RULE_xor_expr
+ || rule->rule_id == RULE_and_expr) {
+ // combined node folding for these rules
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (rule->rule_id == RULE_expr) {
+ // int | int
+ arg0 |= arg1;
+ } else if (rule->rule_id == RULE_xor_expr) {
+ // int ^ int
+ arg0 ^= arg1;
+ } else if (rule->rule_id == RULE_and_expr) {
+ // int & int
+ arg0 &= arg1;
+ }
+ if (!MP_SMALL_INT_FITS(arg0)) { // check needed?
+ goto folding_fail;
+ }
+ }
+ } else if (rule->rule_id == RULE_shift_expr
+ || rule->rule_id == RULE_arith_expr
+ || rule->rule_id == RULE_term) {
+ // combined node folding for these rules
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ const byte *ptop = (byte*)pt->vv.buf + pt->vv.len;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ p = pt_get_small_int(p, &arg0);
+ while (p != ptop) {
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ mp_int_t arg1;
+ p = pt_get_small_int(p, &arg1);
+ if (tok == MP_TOKEN_OP_DBL_LESS) {
+ // int << int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD
+ || arg0 > (MP_SMALL_INT_MAX >> arg1)
+ || arg0 < (MP_SMALL_INT_MIN >> arg1)) {
+ goto folding_fail;
+ }
+ arg0 <<= arg1;
+ } else if (tok == MP_TOKEN_OP_DBL_MORE) {
+ // int >> int
+ if (arg1 >= (mp_int_t)BITS_PER_WORD) {
+ // Shifting to big amounts is underfined behavior
+ // in C and is CPU-dependent; propagate sign bit.
+ arg1 = BITS_PER_WORD - 1;
+ }
+ arg0 >>= arg1;
+ } else if (tok == MP_TOKEN_OP_PLUS) {
+ // int + int
+ arg0 += arg1;
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // int - int
+ arg0 -= arg1;
+ } else if (tok == MP_TOKEN_OP_STAR) {
+ // int * int
+ if (mp_small_int_mul_overflow(arg0, arg1)) {
+ goto folding_fail;
+ }
+ arg0 *= arg1;
+ } else if (tok == MP_TOKEN_OP_SLASH) {
+ // int / int
+ goto folding_fail;
+ } else if (tok == MP_TOKEN_OP_PERCENT) {
+ // int % int
+ if (arg1 == 0) {
+ goto folding_fail;
+ }
+ arg0 = mp_small_int_modulo(arg0, arg1);
+ } else {
+ assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be
+ // int // int
+ if (arg1 == 0) {
+ goto folding_fail;
+ }
+ arg0 = mp_small_int_floor_divide(arg0, arg1);
+ }
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ goto folding_fail;
+ }
+ }
+ } else if (rule->rule_id == RULE_factor_2) {
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ p += 1; // it's a token
+ byte tok = *p++;
+ if (*p != MP_PT_SMALL_INT) {
+ goto folding_fail;
+ }
+ arg0 = pt_small_int_value(p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ // +int
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ // -int
+ arg0 = -arg0;
+ if (!MP_SMALL_INT_FITS(arg0)) {
+ goto folding_fail;
+ }
+ } else {
+ assert(tok == MP_TOKEN_OP_TILDE); // should be
+ // ~int
+ arg0 = ~arg0;
+ }
+ } else {
+ goto folding_fail;
+ }
+
+ // success folding this rule
+ pt_raw_truncate_at(pt, pt_off);
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, arg0);
+ return;
+
+folding_fail:;
+#endif
+
+ int extra_node = 0;
+ /*
+ if (ADD_BLANK_NODE(rule)) {
+ extra_node = 1 + BYTES_PER_WORD; // for small int node
+ }
+ */
+
+ size_t nbytes = pt->vv.len + extra_node - pt_off;
+ int nb1 = vuint_nbytes(src_line);
+ int nb2 = vuint_nbytes(nbytes);
+ byte *dest = (byte*)pt_raw_ins_blank(pt, pt_off, 1 + nb1 + nb2 + extra_node);
+ dest[0] = MP_PT_RULE_BASE + rule->rule_id;
+ vuint_store(dest + 1, nb1, src_line);
+ vuint_store(dest + 1 + nb1, nb2, nbytes);
+
+ // insert small int node for scope index
+ if (extra_node != 0) {
+ dest[1 + nb1 + nb2] = MP_PT_SMALL_INT;
+ size_t val = ++parser->cur_scope_id;
+ for (size_t i = 0; i < BYTES_PER_WORD; ++i) {
+ dest[1 + nb1 + nb2 + 1 + i] = val;
+ val >>= 8;
+ }
+ }
+}
+
+STATIC void make_node_const_object(parser_t *parser, pt_t *pt, mp_obj_t obj) {
+ int nb = vuint_nbytes(parser->co_used);
+ byte *buf = pt_raw_add_blank(pt, 1 + nb);
+ buf[0] = MP_PT_CONST_OBJECT;
+ vuint_store(buf + 1, nb, parser->co_used);
+ if (parser->co_used >= parser->co_alloc) {
+ // TODO use m_renew_maybe
+ size_t alloc = parser->co_alloc + 8;
+ parser->co_data = m_renew(mp_uint_t, parser->co_data, parser->co_alloc, alloc);
+ parser->co_alloc = alloc;
+ }
+ parser->co_data[parser->co_used++] = (mp_uint_t)obj;
+}
+
+STATIC void make_node_string_bytes(parser_t *parser, pt_t *pt, mp_token_kind_t tok, const char *str, size_t len) {
+ mp_obj_t o;
+ if (tok == MP_TOKEN_STRING) {
+ o = mp_obj_new_str(str, len, false);
+ } else {
+ o = mp_obj_new_bytes((const byte*)str, len);
+ }
+ make_node_const_object(parser, pt, o);
+}
+
+STATIC bool pt_add_token(parser_t *parser, pt_t *pt) {
+ mp_lexer_t *lex = parser->lexer;
+ if (lex->tok_kind == MP_TOKEN_NAME) {
+ qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
+ #if MICROPY_COMP_CONST
+ // lookup identifier in table of dynamic constants
+ mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP);
+ if (elem != NULL) {
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value));
+ } else
+ #endif
+ {
+ pt_add_kind_qstr(pt, MP_PT_ID_BASE, id);
+ }
+ } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
+ mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
+ if (MP_OBJ_IS_SMALL_INT(o)) {
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(o));
+ } else {
+ make_node_const_object(parser, pt, o);
+ }
+ } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
+ mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
+ make_node_const_object(parser, pt, o);
+ } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
+ // join adjacent string/bytes literals
+ mp_token_kind_t tok_kind = lex->tok_kind;
+ vstr_t vstr;
+ vstr_init(&vstr, lex->vstr.len);
+ do {
+ vstr_add_strn(&vstr, lex->vstr.buf, lex->vstr.len);
+ mp_lexer_to_next(lex);
+ } while (lex->tok_kind == tok_kind);
+
+ if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
+ return false;
+ }
+
+ // Don't automatically intern all strings/bytes. doc strings (which are usually large)
+ // will be discarded by the compiler, and so we shouldn't intern them.
+ qstr qst = MP_QSTR_NULL;
+ if (vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
+ // intern short strings
+ qst = qstr_from_strn(vstr.buf, vstr.len);
+ } else {
+ // check if this string is already interned
+ qst = qstr_find_strn(vstr.buf, vstr.len);
+ }
+ if (qst != MP_QSTR_NULL) {
+ // qstr exists, make a leaf node
+ pt_add_kind_qstr(pt, tok_kind == MP_TOKEN_STRING ? MP_PT_STRING : MP_PT_BYTES, qst);
+ } else {
+ // not interned, make a node holding a pointer to the string/bytes data
+ make_node_string_bytes(parser, pt, tok_kind, vstr.buf, vstr.len);
+ }
+ vstr_clear(&vstr);
+ return true;
+ } else {
+ pt_add_kind_byte(pt, MP_PT_TOKEN, lex->tok_kind);
+ }
+ mp_lexer_to_next(lex);
+ return true;
+}
+
+const byte *pt_rule_extract_top(const byte *p, const byte **ptop) {
+ assert(*p >= MP_PT_RULE_BASE);
+ p++;
+ vuint_load(&p);
+ size_t nbytes = vuint_load(&p);
+ *ptop = p + nbytes;
+ return p;
+}
+
+const byte *pt_rule_extract(const byte *p, size_t *rule_id, size_t *src_line, const byte **ptop) {
+ assert(*p >= MP_PT_RULE_BASE);
+ *rule_id = *p++ - MP_PT_RULE_BASE;
+ *src_line = vuint_load(&p);
+ size_t nbytes = vuint_load(&p);
+ *ptop = p + nbytes;
+ return p;
+}
+
+bool pt_is_rule_empty(const byte *p) {
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+ return p == ptop;
+}
+
+mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
+
+ // initialise parser and allocate memory for its stacks
+ parser_t parser;
+
+ parser.parse_error = PARSE_ERROR_NONE;
+
+ parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
+ parser.rule_stack_top = 0;
+ parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc);
+
+ parser.cur_scope_id = 0;
+
+ parser.co_alloc = 0;
+ parser.co_used = 0;
+ parser.co_data = NULL;
+
+ parser.lexer = lex;
+
+ parser.tree.chunk = NULL;
+
+ #if MICROPY_COMP_CONST
+ mp_map_init(&parser.consts, 0);
+ #endif
+
+ // check if we could allocate the stacks
+ if (parser.rule_stack == NULL) {
+ goto memory_error;
+ }
+
+ // work out the top-level rule to use, and push it on the stack
+ size_t top_level_rule;
+ switch (input_kind) {
+ case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
+ case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
+ default: top_level_rule = RULE_file_input;
+ }
+ push_rule(&parser, lex->tok_line, rules[top_level_rule], 0, 0);
+
+ // parse!
+
+ size_t n, i; // state for the current rule
+ size_t pt_off = 0; // state for the current rule
+ size_t rule_src_line; // source line for the first token matched by the current rule
+ bool backtrack = false;
+ const rule_t *rule = NULL;
+ pt_t *pt = pt_new();
+
+ for (;;) {
+ next_rule:
+ if (parser.rule_stack_top == 0 || parser.parse_error) {
+ break;
+ }
+
+ pop_rule(&parser, &rule, &i, &rule_src_line, &pt_off);
+ n = rule->act & RULE_ACT_ARG_MASK;
+
+ if (i == 0) {
+ pt_off = pt->vv.len;
+ }
+
+ /*
+ // debugging
+ printf("depth=%d ", parser.rule_stack_top);
+ for (int j = 0; j < parser.rule_stack_top; ++j) {
+ printf(" ");
+ }
+ printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
+ */
+
+ switch (rule->act & RULE_ACT_KIND_MASK) {
+ case RULE_ACT_OR:
+ if (i > 0 && !backtrack) {
+ goto next_rule;
+ } else {
+ backtrack = false;
+ }
+ for (; i < n; ++i) {
+ uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK;
+ if (kind == RULE_ARG_TOK) {
+ if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) {
+ if (!pt_add_token(&parser, pt)) {
+ goto syntax_error;
+ }
+ goto next_rule;
+ }
+ } else {
+ assert(kind == RULE_ARG_RULE);
+ if (i + 1 < n) {
+ push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this or-rule
+ }
+ push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule
+ goto next_rule;
+ }
+ }
+ backtrack = true;
+ break;
+
+ case RULE_ACT_AND: {
+
+ // failed, backtrack if we can, else syntax error
+ if (backtrack) {
+ assert(i > 0);
+ if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
+ // an optional rule that failed, so continue with next arg
+ pt_add_null(pt);
+ backtrack = false;
+ } else {
+ // a mandatory rule that failed, so propagate backtrack
+ if (i > 1) {
+ // already eaten tokens so can't backtrack
+ goto syntax_error;
+ } else {
+ goto next_rule;
+ }
+ }
+ }
+
+ // progress through the rule
+ for (; i < n; ++i) {
+ switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
+ case RULE_ARG_TOK: {
+ // need to match a token
+ mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
+ if (lex->tok_kind == tok_kind) {
+ // matched token
+ if (tok_kind == MP_TOKEN_NAME) {
+ pt_add_kind_qstr(pt, MP_PT_ID_BASE, qstr_from_strn(lex->vstr.buf, lex->vstr.len));
+ }
+ if (i == 0 && ADD_BLANK_NODE(rule)) {
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, ++parser.cur_scope_id);
+ }
+ mp_lexer_to_next(lex);
+ } else {
+ // failed to match token
+ if (i > 0) {
+ // already eaten tokens so can't backtrack
+ goto syntax_error;
+ } else {
+ // this rule failed, so backtrack
+ backtrack = true;
+ goto next_rule;
+ }
+ }
+ break;
+ }
+ case RULE_ARG_RULE:
+ case RULE_ARG_OPT_RULE:
+ default:
+ push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this and-rule
+ push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule
+ goto next_rule;
+ }
+ }
+
+ assert(i == n);
+
+ // matched the rule, so now build the corresponding parse_node
+
+ // count number of arguments for the parse_node
+ i = 0;
+ bool emit_rule = false;
+ /*
+ for (size_t x = 0; x < n; ++x) {
+ if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
+ mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
+ if (tok_kind >= MP_TOKEN_NAME) {
+ emit_rule = true;
+ }
+ if (tok_kind == MP_TOKEN_NAME) {
+ // only tokens which were names are pushed to stack
+ i += 1;
+ }
+ } else {
+ // rules are always pushed
+ i += 1;
+ }
+ }
+ */
+ for (size_t x = 0; x < n; ++x) {
+ if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
+ mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
+ if (tok_kind >= MP_TOKEN_NAME) {
+ emit_rule = true;
+ }
+ }
+ }
+ for (const byte *p = (byte*)pt->vv.buf + pt_off; p < (byte*)pt->vv.buf + pt->vv.len;) {
+ i += 1;
+ p = pt_advance(p, true);
+ }
+
+ #if 0 && !MICROPY_ENABLE_DOC_STRING
+ // this code discards lonely statements, such as doc strings
+ if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
+ mp_parse_node_t p = peek_result(&parser, 1);
+ if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) {
+ pop_result(&parser); // MP_PARSE_NODE_NULL
+ mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string
+ if (MP_PARSE_NODE_IS_STRUCT(pn)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
+ if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
+ m_del(char, (char*)pns->nodes[0], (mp_uint_t)pns->nodes[1]);
+ }
+ }
+ push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0);
+ break;
+ }
+ }
+ #endif
+
+ // always emit these rules, even if they have only 1 argument
+ if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) {
+ emit_rule = true;
+ }
+
+ // if a rule has the RULE_ACT_ALLOW_IDENT bit set then this
+ // rule should not be emitted if it has only 1 argument
+ if (rule->act & RULE_ACT_ALLOW_IDENT) {
+ emit_rule = false;
+ }
+
+ // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data)
+ if (ADD_BLANK_NODE(rule)) {
+ emit_rule = true;
+ // TODO
+ //add_result_node(&parser, MP_PARSE_NODE_NULL);
+ //i += 1;
+ }
+
+ // count number of non-null nodes
+ size_t num_not_null = 0;
+ size_t num_trail_null = 0;
+ { const byte *p = (byte*)pt->vv.buf + pt_off;
+ for (size_t x = 0; x < i; ++x) {
+ if (*p != MP_PT_NULL) {
+ num_not_null += 1;
+ num_trail_null = 0;
+ } else {
+ num_trail_null += 1;
+ }
+ p = pt_advance(p, true);
+ }}
+
+ if (emit_rule || num_not_null != 1) {
+ // need to add rule when num_not_null == 0 for, eg, atom_paren, testlist_comp_3b
+ pt_del_tail_bytes(pt, num_trail_null); // remove trailing null nodes, they are store implicitly
+ pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i - num_trail_null);
+ } else {
+ // single result, leave it on stack
+ const byte *p = (byte*)pt->vv.buf + pt_off;
+ for (size_t x = 0; x < i; ++x) {
+ if (*p == MP_PT_NULL) {
+ p = pt_del_byte(pt, p);
+ } else {
+ p = pt_advance(p, true);
+ }
+ }
+ }
+ break;
+ }
+
+ case RULE_ACT_LIST:
+ default: // nothing else
+ {
+ // n=2 is: item item*
+ // n=1 is: item (sep item)*
+ // n=3 is: item (sep item)* [sep]
+ bool had_trailing_sep;
+ if (backtrack) {
+ list_backtrack:
+ had_trailing_sep = false;
+ if (n == 2) {
+ if (i == 1) {
+ // fail on item, first time round; propagate backtrack
+ goto next_rule;
+ } else {
+ // fail on item, in later rounds; finish with this rule
+ backtrack = false;
+ }
+ } else {
+ if (i == 1) {
+ // fail on item, first time round; propagate backtrack
+ goto next_rule;
+ } else if ((i & 1) == 1) {
+ // fail on item, in later rounds; have eaten tokens so can't backtrack
+ if (n == 3) {
+ // list allows trailing separator; finish parsing list
+ had_trailing_sep = true;
+ backtrack = false;
+ } else {
+ // list doesn't allowing trailing separator; fail
+ goto syntax_error;
+ }
+ } else {
+ // fail on separator; finish parsing list
+ backtrack = false;
+ }
+ }
+ } else {
+ for (;;) {
+ size_t arg = rule->arg[i & 1 & n];
+ switch (arg & RULE_ARG_KIND_MASK) {
+ case RULE_ARG_TOK:
+ if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
+ if (i & 1 & n) {
+ // separators which are tokens are not pushed to result stack
+ mp_lexer_to_next(lex);
+ } else {
+ pt_add_token(&parser, pt);
+ }
+ // got element of list, so continue parsing list
+ i += 1;
+ } else {
+ // couldn't get element of list
+ i += 1;
+ backtrack = true;
+ goto list_backtrack;
+ }
+ break;
+ case RULE_ARG_RULE:
+ rule_list_no_other_choice:
+ push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this list-rule
+ push_rule_from_arg(&parser, arg); // push child of list-rule
+ goto next_rule;
+ default:
+ assert(0);
+ goto rule_list_no_other_choice; // to help flow control analysis
+ }
+ }
+ }
+ assert(i >= 1);
+
+ // compute number of elements in list, result in i
+ i -= 1;
+ if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
+ // don't count separators when they are tokens
+ i = (i + 1) / 2;
+ }
+
+ if (i == 1) {
+ // list matched single item
+ if (had_trailing_sep) {
+ // if there was a trailing separator, make a list of a single item
+ pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i);
+ } else {
+ // just leave single item on stack (ie don't wrap in a list)
+ }
+ } else {
+ pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i);
+ }
+ break;
+ }
+ }
+ }
+
+ #if MICROPY_COMP_CONST
+ mp_map_deinit(&parser.consts);
+ #endif
+
+ #if 0
+ pt_show(pt);
+
+ {
+ size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
+ qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
+ printf("qstr pool: n_pool=" UINT_FMT ", n_qstr=" UINT_FMT ", n_str_data_bytes="
+ UINT_FMT ", n_total_bytes=" UINT_FMT "\n",
+ n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
+ }
+ #endif
+
+ mp_obj_t exc;
+
+ if (parser.parse_error) {
+ #if MICROPY_COMP_CONST
+ if (parser.parse_error == PARSE_ERROR_CONST) {
+ exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
+ "constant must be an integer");
+ } else
+ #endif
+ {
+ assert(parser.parse_error == PARSE_ERROR_MEMORY);
+ memory_error:
+ exc = mp_obj_new_exception_msg(&mp_type_MemoryError,
+ "parser could not allocate enough memory");
+ }
+ parser.tree.root = NULL;
+ } else if (
+ lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
+ || pt->vv.len == 0 // check that we got a node (can fail on empty input)
+ ) {
+ syntax_error:
+ if (lex->tok_kind == MP_TOKEN_INDENT) {
+ exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
+ "unexpected indent");
+ } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
+ exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
+ "unindent does not match any outer indentation level");
+ } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
+ exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
+ "cannot mix bytes and nonbytes literals");
+ } else {
+ exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
+ "invalid syntax");
+ }
+ parser.tree.root = NULL;
+ } else {
+ // no errors
+
+ //result_stack_show(parser);
+ //printf("rule stack alloc: %d\n", parser.rule_stack_alloc);
+ //printf("result stack alloc: %d\n", parser.result_stack_alloc);
+ //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);
+
+ // add number of scopes
+ pt_add_kind_int(pt, MP_PT_SMALL_INT, parser.cur_scope_id + 1);
+
+ // get the root parse node that we created
+ //assert(parser.result_stack_top == 1);
+ exc = MP_OBJ_NULL;
+ parser.tree.root = (byte*)pt->vv.buf;
+ parser.tree.co_data = parser.co_data;
+ }
+
+ // free the memory that we don't need anymore
+ m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
+ // we also free the lexer on behalf of the caller (see below)
+
+ if (exc != MP_OBJ_NULL) {
+ // had an error so raise the exception
+ // add traceback to give info about file name and location
+ // we don't have a 'block' name, so just pass the NULL qstr to indicate this
+ mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
+ mp_lexer_free(lex);
+ nlr_raise(exc);
+ } else {
+ mp_lexer_free(lex);
+ return parser.tree;
+ }
+}
+
+void mp_parse_tree_clear(mp_parse_tree_t *tree) {
+ mp_parse_chunk_t *chunk = tree->chunk;
+ while (chunk != NULL) {
+ mp_parse_chunk_t *next = chunk->union_.next;
+ m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
+ chunk = next;
+ }
+}