diff options
Diffstat (limited to 'py/modmath.c')
-rw-r--r-- | py/modmath.c | 69 |
1 files changed, 68 insertions, 1 deletions
diff --git a/py/modmath.c b/py/modmath.c index 6072c780a5..d106f240c8 100644 --- a/py/modmath.c +++ b/py/modmath.c @@ -169,7 +169,7 @@ MATH_FUN_1(gamma, tgamma) // lgamma(x): return the natural logarithm of the gamma function of x MATH_FUN_1(lgamma, lgamma) #endif -//TODO: factorial, fsum +//TODO: fsum // Function that takes a variable number of arguments @@ -232,6 +232,70 @@ STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) { } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); +#if MICROPY_PY_MATH_FACTORIAL + +#if MICROPY_OPT_MATH_FACTORIAL + +// factorial(x): slightly efficient recursive implementation +STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) { + if (start == end) { + return mp_obj_new_int(start); + } else if (end - start == 1) { + return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end)); + } else if (end - start == 2) { + mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start); + mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1); + mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end); + mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle); + return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right); + } else { + mp_uint_t middle = start + ((end - start) >> 1); + mp_obj_t left = mp_math_factorial_inner(start, middle); + mp_obj_t right = mp_math_factorial_inner(middle + 1, end); + return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right); + } +} +STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) { + mp_int_t max = mp_obj_get_int(x_obj); + if (max < 0) { + mp_raise_msg(&mp_type_ValueError, "negative factorial"); + } else if (max == 0) { + return MP_OBJ_NEW_SMALL_INT(1); + } + return mp_math_factorial_inner(1, max); +} + +#else + +// factorial(x): squared difference implementation +// based on http://www.luschny.de/math/factorial/index.html +STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) { + mp_int_t max = mp_obj_get_int(x_obj); + if (max < 0) { + mp_raise_msg(&mp_type_ValueError, "negative factorial"); + } else if (max <= 1) { + return MP_OBJ_NEW_SMALL_INT(1); + } + mp_int_t h = max >> 1; + mp_int_t q = h * h; + mp_int_t r = q << 1; + if (max & 1) { + r *= max; + } + mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r); + for (mp_int_t num = 1; num < max - 2; num += 2) { + q -= num; + prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q)); + } + return prod; +} + +#endif + +STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial); + +#endif + STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) }, { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, @@ -274,6 +338,9 @@ STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = { { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) }, { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) }, { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) }, + #if MICROPY_PY_MATH_FACTORIAL + { MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) }, + #endif #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) }, { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) }, |