summaryrefslogtreecommitdiffstatshomepage
path: root/py
diff options
context:
space:
mode:
authorDamien George <damien.p.george@gmail.com>2014-03-12 15:38:15 +0000
committerDamien George <damien.p.george@gmail.com>2014-03-12 15:38:15 +0000
commit9d68e9ccdd4d7f4ecb7a8765ca694e355753d686 (patch)
tree73926072f5555829e31dfb1a1b72abe259bacd03 /py
parentbb4a43f35ccb128aeb42e483d9937764353de49e (diff)
downloadmicropython-9d68e9ccdd4d7f4ecb7a8765ca694e355753d686.tar.gz
micropython-9d68e9ccdd4d7f4ecb7a8765ca694e355753d686.zip
py: Implement integer overflow checking for * and << ops.
If operation will overflow, a multi-precision integer is created.
Diffstat (limited to 'py')
-rw-r--r--py/obj.h6
-rw-r--r--py/objfloat.c2
-rw-r--r--py/objint.c6
-rw-r--r--py/objint_mpz.c2
-rw-r--r--py/runtime.c147
5 files changed, 131 insertions, 32 deletions
diff --git a/py/obj.h b/py/obj.h
index 4d93c7afad..d41db37c08 100644
--- a/py/obj.h
+++ b/py/obj.h
@@ -29,6 +29,8 @@ typedef struct _mp_obj_base_t mp_obj_base_t;
// - xxxx...xx00: a pointer to an mp_obj_base_t
// In SMALL_INT, next-to-highest bits is used as sign, so both must match for value in range
+#define MP_SMALL_INT_MIN ((mp_small_int_t)(((machine_int_t)WORD_MSBIT_HIGH) >> 1))
+#define MP_SMALL_INT_MAX ((mp_small_int_t)(~(MP_SMALL_INT_MIN)))
#define MP_OBJ_FITS_SMALL_INT(n) ((((n) ^ ((n) << 1)) & WORD_MSBIT_HIGH) == 0)
#define MP_OBJ_IS_SMALL_INT(o) ((((mp_small_int_t)(o)) & 1) != 0)
#define MP_OBJ_IS_QSTR(o) ((((mp_small_int_t)(o)) & 3) == 2)
@@ -218,9 +220,7 @@ mp_obj_t mp_obj_new_cell(mp_obj_t obj);
mp_obj_t mp_obj_new_int(machine_int_t value);
mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value);
mp_obj_t mp_obj_new_int_from_long_str(const char *s);
-#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
-mp_obj_t mp_obj_new_int_from_ll(long long val);
-#endif
+mp_obj_t mp_obj_new_int_from_ll(long long val); // this must return a multi-precision integer object (or raise an overflow exception)
mp_obj_t mp_obj_new_str(const byte* data, uint len, bool make_qstr_if_not_already);
mp_obj_t mp_obj_new_bytes(const byte* data, uint len);
#if MICROPY_ENABLE_FLOAT
diff --git a/py/objfloat.c b/py/objfloat.c
index 91d669ad58..04d1278014 100644
--- a/py/objfloat.c
+++ b/py/objfloat.c
@@ -17,8 +17,6 @@
#include "formatfloat.h"
#endif
-mp_obj_t mp_obj_new_float(mp_float_t value);
-
STATIC void float_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) {
mp_obj_float_t *o = o_in;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
diff --git a/py/objint.c b/py/objint.c
index 490b4340bb..7a9b0366db 100644
--- a/py/objint.c
+++ b/py/objint.c
@@ -71,6 +71,12 @@ mp_obj_t mp_obj_new_int_from_long_str(const char *s) {
return mp_const_none;
}
+// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
+mp_obj_t mp_obj_new_int_from_ll(long long val) {
+ nlr_jump(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
+ return mp_const_none;
+}
+
mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value) {
// SMALL_INT accepts only signed numbers, of one bit less size
// then word size, which totals 2 bits less for unsigned numbers.
diff --git a/py/objint_mpz.c b/py/objint_mpz.c
index 5cd4fb7bac..e8e8b85472 100644
--- a/py/objint_mpz.c
+++ b/py/objint_mpz.c
@@ -161,7 +161,7 @@ mp_obj_t mp_obj_new_int(machine_int_t value) {
mp_obj_t mp_obj_new_int_from_ll(long long val) {
mp_obj_int_t *o = mp_obj_int_new_mpz();
- mpz_set_from_int(&o->mpz, val);
+ mpz_set_from_ll(&o->mpz, val);
return o;
}
diff --git a/py/runtime.c b/py/runtime.c
index 31cbb660ad..bd6f2289de 100644
--- a/py/runtime.c
+++ b/py/runtime.c
@@ -455,16 +455,23 @@ mp_obj_t rt_unary_op(int op, mp_obj_t arg) {
if (MP_OBJ_IS_SMALL_INT(arg)) {
mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
switch (op) {
- case RT_UNARY_OP_BOOL: return MP_BOOL(val != 0);
- case RT_UNARY_OP_POSITIVE: break;
- case RT_UNARY_OP_NEGATIVE: val = -val; break;
- case RT_UNARY_OP_INVERT: val = ~val; break;
- default: assert(0); val = 0;
- }
- if (MP_OBJ_FITS_SMALL_INT(val)) {
- return MP_OBJ_NEW_SMALL_INT(val);
+ case RT_UNARY_OP_BOOL:
+ return MP_BOOL(val != 0);
+ case RT_UNARY_OP_POSITIVE:
+ return arg;
+ case RT_UNARY_OP_NEGATIVE:
+ // check for overflow
+ if (val == MP_SMALL_INT_MIN) {
+ return mp_obj_new_int(-val);
+ } else {
+ return MP_OBJ_NEW_SMALL_INT(-val);
+ }
+ case RT_UNARY_OP_INVERT:
+ return MP_OBJ_NEW_SMALL_INT(~val);
+ default:
+ assert(0);
+ return arg;
}
- return mp_obj_new_int(val);
} else {
mp_obj_type_t *type = mp_obj_get_type(arg);
if (type->unary_op != NULL) {
@@ -532,6 +539,15 @@ mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
if (MP_OBJ_IS_SMALL_INT(rhs)) {
mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
+ // This is a binary operation: lhs_val op rhs_val
+ // We need to be careful to handle overflow; see CERT INT32-C
+ // Operations that can overflow:
+ // + result always fits in machine_int_t, then handled by SMALL_INT check
+ // - result always fits in machine_int_t, then handled by SMALL_INT check
+ // * checked explicitly
+ // / if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
+ // % if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
+ // << checked explicitly
switch (op) {
case RT_BINARY_OP_OR:
case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
@@ -540,41 +556,117 @@ mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
case RT_BINARY_OP_AND:
case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
case RT_BINARY_OP_LSHIFT:
- case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break;
+ case RT_BINARY_OP_INPLACE_LSHIFT: {
+ if (rhs_val < 0) {
+ // negative shift not allowed
+ nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
+ } else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
+ // left-shift will overflow, so use higher precision integer
+ lhs = mp_obj_new_int_from_ll(lhs_val);
+ goto generic_binary_op;
+ } else {
+ // use standard precision
+ lhs_val <<= rhs_val;
+ }
+ break;
+ }
case RT_BINARY_OP_RSHIFT:
- case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break;
+ case RT_BINARY_OP_INPLACE_RSHIFT:
+ if (rhs_val < 0) {
+ // negative shift not allowed
+ nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
+ } else {
+ // standard precision is enough for right-shift
+ lhs_val >>= rhs_val;
+ }
+ break;
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case RT_BINARY_OP_SUBTRACT:
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case RT_BINARY_OP_MULTIPLY:
- case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
+ case RT_BINARY_OP_INPLACE_MULTIPLY: {
+
+ // If long long type exists and is larger than machine_int_t, then
+ // we can use the following code to perform overflow-checked multiplication.
+ // Otherwise (eg in x64 case) we must use the branching code below.
+ #if 0
+ // compute result using long long precision
+ long long res = (long long)lhs_val * (long long)rhs_val;
+ if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
+ // result overflowed SMALL_INT, so return higher precision integer
+ return mp_obj_new_int_from_ll(res);
+ } else {
+ // use standard precision
+ lhs_val = (mp_small_int_t)res;
+ }
+ #endif
+
+ if (lhs_val > 0) { // lhs_val is positive
+ if (rhs_val > 0) { // lhs_val and rhs_val are positive
+ if (lhs_val > (MP_SMALL_INT_MAX / rhs_val)) {
+ goto mul_overflow;
+ }
+ } else { // lhs_val positive, rhs_val nonpositive
+ if (rhs_val < (MP_SMALL_INT_MIN / lhs_val)) {
+ goto mul_overflow;
+ }
+ } // lhs_val positive, rhs_val nonpositive
+ } else { // lhs_val is nonpositive
+ if (rhs_val > 0) { // lhs_val is nonpositive, rhs_val is positive
+ if (lhs_val < (MP_SMALL_INT_MIN / rhs_val)) {
+ goto mul_overflow;
+ }
+ } else { // lhs_val and rhs_val are nonpositive
+ if (lhs_val != 0 && rhs_val < (MP_SMALL_INT_MAX / lhs_val)) {
+ goto mul_overflow;
+ }
+ } // End if lhs_val and rhs_val are nonpositive
+ } // End if lhs_val is nonpositive
+
+ // use standard precision
+ return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
+
+ mul_overflow:
+ // use higher precision
+ lhs = mp_obj_new_int_from_ll(lhs_val);
+ goto generic_binary_op;
+
+ break;
+ }
case RT_BINARY_OP_FLOOR_DIVIDE:
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break;
- #if MICROPY_ENABLE_FLOAT
+ #if MICROPY_ENABLE_FLOAT
case RT_BINARY_OP_TRUE_DIVIDE:
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
- #endif
+ #endif
// TODO implement modulo as specified by Python
case RT_BINARY_OP_MODULO:
case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break;
- // TODO check for negative power, and overflow
case RT_BINARY_OP_POWER:
case RT_BINARY_OP_INPLACE_POWER:
- {
- int ans = 1;
- while (rhs_val > 0) {
- if (rhs_val & 1) {
- ans *= lhs_val;
+ if (rhs_val < 0) {
+ #if MICROPY_ENABLE_FLOAT
+ lhs = mp_obj_new_float(lhs_val);
+ goto generic_binary_op;
+ #else
+ nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
+ #endif
+ } else {
+ // TODO check for overflow
+ machine_int_t ans = 1;
+ while (rhs_val > 0) {
+ if (rhs_val & 1) {
+ ans *= lhs_val;
+ }
+ lhs_val *= lhs_val;
+ rhs_val /= 2;
}
- lhs_val *= lhs_val;
- rhs_val /= 2;
+ lhs_val = ans;
}
- lhs_val = ans;
break;
- }
case RT_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
case RT_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
case RT_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
@@ -585,8 +677,9 @@ mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
// TODO: We just should make mp_obj_new_int() inline and use that
if (MP_OBJ_FITS_SMALL_INT(lhs_val)) {
return MP_OBJ_NEW_SMALL_INT(lhs_val);
+ } else {
+ return mp_obj_new_int(lhs_val);
}
- return mp_obj_new_int(lhs_val);
#if MICROPY_ENABLE_FLOAT
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
return mp_obj_float_binary_op(op, lhs_val, rhs);
@@ -628,7 +721,9 @@ mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
}
// generic binary_op supplied by type
- mp_obj_type_t *type = mp_obj_get_type(lhs);
+ mp_obj_type_t *type;
+generic_binary_op:
+ type = mp_obj_get_type(lhs);
if (type->binary_op != NULL) {
mp_obj_t result = type->binary_op(op, lhs, rhs);
if (result != MP_OBJ_NULL) {