diff options
author | Damien George <damien.p.george@gmail.com> | 2014-12-10 22:07:04 +0000 |
---|---|---|
committer | Damien George <damien.p.george@gmail.com> | 2014-12-10 22:08:14 +0000 |
commit | 969a6b37bfc655609e540053c2bdcce8a6fdc64d (patch) | |
tree | 5e7d74f72d702efd07ff6ba6d93d3a10e4e00fd2 /py/modcmath.c | |
parent | d51107927d53a80835195ba1ac97048c203f05f2 (diff) | |
download | micropython-969a6b37bfc655609e540053c2bdcce8a6fdc64d.tar.gz micropython-969a6b37bfc655609e540053c2bdcce8a6fdc64d.zip |
py: Make functions static where appropriate.
Diffstat (limited to 'py/modcmath.c')
-rw-r--r-- | py/modcmath.c | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/py/modcmath.c b/py/modcmath.c index 4cd3a82359..7514a8c029 100644 --- a/py/modcmath.c +++ b/py/modcmath.c @@ -47,7 +47,7 @@ extern const mp_obj_float_t mp_math_pi_obj; /// \function phase(z) /// Returns the phase of the number `z`, in the range (-pi, +pi]. -mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)); @@ -56,7 +56,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase); /// \function polar(z) /// Returns, as a tuple, the polar form of `z`. -mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_obj_t tuple[2] = { @@ -69,7 +69,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); /// \function rect(r, phi) /// Returns the complex number with modulus `r` and phase `phi`. -mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { +STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { mp_float_t r = mp_obj_get_float(r_obj); mp_float_t phi = mp_obj_get_float(phi_obj); return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi)); @@ -78,7 +78,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); /// \function exp(z) /// Return the exponential of `z`. -mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); @@ -89,7 +89,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); /// \function log(z) /// Return the natural logarithm of `z`. The branch cut is along the negative real axis. // TODO can take second argument, being the base -mp_obj_t mp_cmath_log(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log)(real*real + imag*imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real)); @@ -98,7 +98,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); /// \function log10(z) /// Return the base-10 logarithm of `z`. The branch cut is along the negative real axis. -mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(0.5 * MICROPY_FLOAT_C_FUN(log10)(real*real + imag*imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real)); @@ -107,7 +107,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); /// \function sqrt(z) /// Return the square-root of `z`. -mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real*real + imag*imag, 0.25); @@ -118,7 +118,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); /// \function cos(z) /// Return the cosine of `z`. -mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); @@ -127,7 +127,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); /// \function sin(z) /// Return the sine of `z`. -mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { +STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { mp_float_t real, imag; mp_obj_get_complex(z_obj, &real, &imag); return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); |