summaryrefslogtreecommitdiffstatshomepage
path: root/py/compile2.c
diff options
context:
space:
mode:
authorDamien George <damien.p.george@gmail.com>2015-10-13 16:39:46 +0100
committerDamien George <damien.p.george@gmail.com>2016-04-18 15:09:34 +0100
commit61398ab45a2ef27ce44769b4259ee97b583f2978 (patch)
treef69060919c31a0e720f383470eb62d59fe8b9fb6 /py/compile2.c
parent5bf649f37065ac0855f55f99496adb4cce63557d (diff)
downloadmicropython-61398ab45a2ef27ce44769b4259ee97b583f2978.tar.gz
micropython-61398ab45a2ef27ce44769b4259ee97b583f2978.zip
py: Implement parse bytecode.
Diffstat (limited to 'py/compile2.c')
-rw-r--r--py/compile2.c3343
1 files changed, 3343 insertions, 0 deletions
diff --git a/py/compile2.c b/py/compile2.c
new file mode 100644
index 0000000000..9db0c2f04d
--- /dev/null
+++ b/py/compile2.c
@@ -0,0 +1,3343 @@
+/*
+ * This file is part of the Micro Python project, http://micropython.org/
+ *
+ * The MIT License (MIT)
+ *
+ * Copyright (c) 2013-2015 Damien P. George
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <assert.h>
+
+#include "py/scope.h"
+#include "py/emit.h"
+#include "py/compile.h"
+#include "py/smallint.h"
+#include "py/runtime.h"
+#include "py/builtin.h"
+
+// TODO need to mangle __attr names
+
+typedef enum {
+#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
+#include "py/grammar.h"
+#undef DEF_RULE
+ PN_maximum_number_of,
+} pn_kind_t;
+
+#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
+
+#if NEED_METHOD_TABLE
+
+// we need a method table to do the lookup for the emitter functions
+#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
+#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
+#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
+#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))
+
+#else
+
+// if we only have the bytecode emitter enabled then we can do a direct call to the functions
+#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
+#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
+#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
+#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))
+
+#endif
+
+#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
+#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
+
+// elements in this struct are ordered to make it compact
+typedef struct _compiler_t {
+ qstr source_file;
+
+ uint8_t is_repl;
+ uint8_t pass; // holds enum type pass_kind_t
+ uint8_t func_arg_is_super; // used to compile special case of super() function call
+ uint8_t have_star;
+
+ // try to keep compiler clean from nlr
+ mp_obj_t compile_error; // set to an exception object if there's an error
+ mp_uint_t compile_error_line; // set to best guess of line of error
+
+ uint next_label;
+
+ uint16_t num_dict_params;
+ uint16_t num_default_params;
+
+ uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
+ uint16_t continue_label;
+ uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
+ uint16_t break_continue_except_level;
+
+ mp_uint_t *co_data;
+
+ mp_uint_t num_scopes;
+ scope_t **scopes;
+ scope_t *scope_cur;
+
+ emit_t *emit; // current emitter
+ #if NEED_METHOD_TABLE
+ const emit_method_table_t *emit_method_table; // current emit method table
+ #endif
+
+ #if MICROPY_EMIT_INLINE_THUMB
+ emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
+ const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
+ #endif
+} compiler_t;
+
+STATIC void compile_error_set_line(compiler_t *comp, const byte *p) {
+ // if the line of the error is unknown then try to update it from the parse data
+ if (comp->compile_error_line == 0 && p != NULL && pt_is_any_rule(p)) {
+ mp_uint_t rule_id, src_line;
+ const byte *ptop;
+ pt_rule_extract(p, &rule_id, &src_line, &ptop);
+ comp->compile_error_line = src_line;
+ }
+}
+
+STATIC void compile_syntax_error(compiler_t *comp, const byte *p, const char *msg) {
+ // only register the error if there has been no other error
+ if (comp->compile_error == MP_OBJ_NULL) {
+ comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
+ compile_error_set_line(comp, p);
+ }
+}
+
+STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra);
+STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind);
+STATIC const byte *compile_node(compiler_t *comp, const byte *p);
+
+STATIC uint comp_next_label(compiler_t *comp) {
+ return comp->next_label++;
+}
+
+STATIC void compile_increase_except_level(compiler_t *comp) {
+ comp->cur_except_level += 1;
+ if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
+ comp->scope_cur->exc_stack_size = comp->cur_except_level;
+ }
+}
+
+STATIC void compile_decrease_except_level(compiler_t *comp) {
+ assert(comp->cur_except_level > 0);
+ comp->cur_except_level -= 1;
+}
+
+STATIC void scope_new_and_link(compiler_t *comp, mp_uint_t scope_idx, scope_kind_t kind, const byte *p, uint emit_options) {
+ scope_t *scope = scope_new(kind, p, comp->source_file, emit_options);
+ scope->parent = comp->scope_cur;
+ comp->scopes[scope_idx] = scope;
+}
+
+typedef void (*apply_list_fun_t)(compiler_t *comp, const byte *p);
+
+STATIC void apply_to_single_or_list(compiler_t *comp, const byte *p, pn_kind_t pn_list_kind, apply_list_fun_t f) {
+ if (pt_is_rule(p, pn_list_kind)) {
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+ while (p != ptop) {
+ f(comp, p);
+ p = pt_next(p);
+ }
+ } else if (!pt_is_null(p)) {
+ f(comp, p);
+ }
+}
+
+STATIC void compile_generic_all_nodes(compiler_t *comp, const byte *p, const byte *ptop) {
+ while (p != ptop) {
+ //printf("NODE: %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3]);
+ p = compile_node(comp, p);
+ }
+}
+
+STATIC void compile_load_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_load(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_store_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
+ } else {
+ #if NEED_METHOD_TABLE
+ mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
+ #else
+ mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
+ #endif
+ }
+}
+
+STATIC void c_tuple(compiler_t *comp, const byte *p, const byte *p_list, const byte *p_list_top) {
+ int total = 0;
+ if (p != NULL) {
+ compile_node(comp, p);
+ total += 1;
+ }
+ while (p_list != p_list_top) {
+ p_list = compile_node(comp, p_list);
+ total += 1;
+ }
+ EMIT_ARG(build_tuple, total);
+}
+
+STATIC void compile_generic_tuple(compiler_t *comp, const byte *p, const byte *ptop) {
+ // a simple tuple expression
+ c_tuple(comp, NULL, p, ptop);
+}
+
+STATIC bool node_is_const_false(const byte *p) {
+ return pt_is_tok(p, MP_TOKEN_KW_FALSE)
+ || (pt_is_small_int(p) && pt_small_int_value(p) == 0);
+}
+
+STATIC bool node_is_const_true(const byte *p) {
+ return pt_is_tok(p, MP_TOKEN_KW_TRUE)
+ || (pt_is_small_int(p) && pt_small_int_value(p) != 0);
+}
+
+STATIC const byte *c_if_cond(compiler_t *comp, const byte *p, bool jump_if, int label) {
+ if (node_is_const_false(p)) {
+ if (jump_if == false) {
+ EMIT_ARG(jump, label);
+ }
+ return pt_next(p);
+ } else if (node_is_const_true(p)) {
+ if (jump_if == true) {
+ EMIT_ARG(jump, label);
+ }
+ return pt_next(p);
+ } else if (pt_is_any_rule(p)) {
+ const byte *ptop;
+ const byte *p2 = pt_rule_extract_top(p, &ptop);
+ if (pt_is_rule(p, PN_or_test)) {
+ if (jump_if == false) {
+ and_or_logic1:;
+ uint label2 = comp_next_label(comp);
+ while (pt_next(p2) != ptop) {
+ p2 = c_if_cond(comp, p2, !jump_if, label2);
+ }
+ p2 = c_if_cond(comp, p2, jump_if, label);
+ EMIT_ARG(label_assign, label2);
+ } else {
+ and_or_logic2:
+ while (p2 != ptop) {
+ p2 = c_if_cond(comp, p2, jump_if, label);
+ }
+ }
+ return p2;
+ } else if (pt_is_rule(p, PN_and_test)) {
+ if (jump_if == false) {
+ goto and_or_logic2;
+ } else {
+ goto and_or_logic1;
+ }
+ } else if (pt_is_rule(p, PN_not_test_2)) {
+ return c_if_cond(comp, p2, !jump_if, label);
+ } else if (pt_is_rule(p, PN_atom_paren)) {
+ // cond is something in parenthesis
+ if (pt_is_rule_empty(p)) {
+ // empty tuple, acts as false for the condition
+ if (jump_if == false) {
+ EMIT_ARG(jump, label);
+ }
+ } else if (pt_is_rule(pt_rule_first(p), PN_testlist_comp)) {
+ // non-empty tuple, acts as true for the condition
+ if (jump_if == true) {
+ EMIT_ARG(jump, label);
+ }
+ } else {
+ // parenthesis around 1 item, is just that item
+ c_if_cond(comp, pt_rule_first(p), jump_if, label);
+ }
+ return pt_next(p);
+ }
+ }
+
+ // nothing special, fall back to default compiling for node and jump
+ p = compile_node(comp, p);
+ EMIT_ARG(pop_jump_if, jump_if, label);
+ return p;
+}
+
+typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
+STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t kind);
+
+STATIC void c_assign_power(compiler_t *comp, const byte *p_orig, assign_kind_t assign_kind) {
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p_orig, &ptop);
+
+ if (assign_kind != ASSIGN_AUG_STORE) {
+ compile_node(comp, p0);
+ }
+
+ const byte *p1 = pt_next(p0);
+
+ if (pt_is_null_with_top(p1, ptop)) {
+ cannot_assign:
+ compile_syntax_error(comp, p_orig, "can't assign to expression");
+ return;
+ }
+
+ if (pt_is_rule(p1, PN_power_trailers)) {
+ const byte *p1top;
+ p1 = pt_rule_extract_top(p1, &p1top);
+ for (;;) {
+ const byte *p1next = pt_next(p1);
+ if (p1next >= p1top) {
+ break;
+ }
+ if (assign_kind != ASSIGN_AUG_STORE) {
+ compile_node(comp, p1);
+ }
+ p1 = p1next;
+ }
+ // p1 now points to final trailer for store
+ }
+
+ if (pt_is_rule(p1, PN_trailer_bracket)) {
+ if (assign_kind == ASSIGN_AUG_STORE) {
+ EMIT(rot_three);
+ EMIT(store_subscr);
+ } else {
+ compile_node(comp, pt_rule_first(p1));
+ if (assign_kind == ASSIGN_AUG_LOAD) {
+ EMIT(dup_top_two);
+ EMIT(load_subscr);
+ } else {
+ EMIT(store_subscr);
+ }
+ }
+ } else if (pt_is_rule(p1, PN_trailer_period)) {
+ qstr attr;
+ pt_extract_id(pt_rule_first(p1), &attr);
+ if (assign_kind == ASSIGN_AUG_LOAD) {
+ EMIT(dup_top);
+ EMIT_ARG(load_attr, attr);
+ } else {
+ if (assign_kind == ASSIGN_AUG_STORE) {
+ EMIT(rot_two);
+ }
+ EMIT_ARG(store_attr, attr);
+ }
+ } else {
+ goto cannot_assign;
+ }
+
+ if (!pt_is_null_with_top(pt_next(p1), ptop)) {
+ goto cannot_assign;
+ }
+}
+
+// we need to allow for a caller passing in 1 initial node followed by an array of nodes
+STATIC void c_assign_tuple(compiler_t *comp, const byte *p_head, const byte *p_tail, const byte *p_tail_top) {
+ uint num_head = (p_head == NULL) ? 0 : 1;
+ uint num_tail = pt_num_nodes(p_tail, p_tail_top);
+
+ // look for star expression
+ const byte *p_star = NULL;
+ if (num_head != 0 && pt_is_rule(p_head, PN_star_expr)) {
+ EMIT_ARG(unpack_ex, 0, num_tail);
+ p_star = p_head;
+ }
+ uint i = 0;
+ for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p), ++i) {
+ if (pt_is_rule(p, PN_star_expr)) {
+ if (p_star == NULL) {
+ EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
+ p_star = p;
+ } else {
+ compile_syntax_error(comp, p, "multiple *x in assignment");
+ return;
+ }
+ }
+ }
+ if (p_star == NULL) {
+ EMIT_ARG(unpack_sequence, num_head + num_tail);
+ }
+ if (num_head != 0) {
+ if (p_head == p_star) {
+ c_assign(comp, pt_rule_first(p_head), ASSIGN_STORE);
+ } else {
+ c_assign(comp, p_head, ASSIGN_STORE);
+ }
+ }
+ for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p)) {
+ if (p == p_star) {
+ c_assign(comp, pt_rule_first(p), ASSIGN_STORE);
+ } else {
+ c_assign(comp, p, ASSIGN_STORE);
+ }
+ }
+}
+
+// assigns top of stack to pn
+STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t assign_kind) {
+ tail_recursion:
+ assert(!pt_is_null(p));
+ if (pt_is_any_id(p)) {
+ qstr arg;
+ p = pt_extract_id(p, &arg);
+ switch (assign_kind) {
+ case ASSIGN_STORE:
+ case ASSIGN_AUG_STORE:
+ compile_store_id(comp, arg);
+ break;
+ case ASSIGN_AUG_LOAD:
+ default:
+ compile_load_id(comp, arg);
+ break;
+ }
+ } else if (!pt_is_any_rule(p)) {
+ compile_syntax_error(comp, p, "can't assign to literal");
+ } else {
+ switch (pt_rule_extract_rule_id(p)) {
+ case PN_power:
+ // lhs is an index or attribute
+ c_assign_power(comp, p, assign_kind);
+ break;
+
+ case PN_testlist_star_expr:
+ case PN_exprlist: {
+ // lhs is a tuple
+ if (assign_kind != ASSIGN_STORE) {
+ goto bad_aug;
+ }
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+ c_assign_tuple(comp, NULL, p0, ptop);
+ break;
+ }
+
+ case PN_atom_paren: {
+ // lhs is something in parenthesis
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+ if (pt_is_null_with_top(p0, ptop)) {
+ // empty tuple
+ goto cannot_assign;
+ } else if (pt_is_rule(p0, PN_testlist_comp)) {
+ if (assign_kind != ASSIGN_STORE) {
+ goto bad_aug;
+ }
+ p = p0;
+ goto testlist_comp;
+ } else {
+ // parenthesis around 1 item, is just that item
+ p = p0;
+ goto tail_recursion;
+ }
+ break;
+ }
+
+ case PN_atom_bracket: {
+ // lhs is something in brackets
+ if (assign_kind != ASSIGN_STORE) {
+ goto bad_aug;
+ }
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop); // skip rule header
+ if (pt_is_null_with_top(p0, ptop)) {
+ // empty list, assignment allowed
+ c_assign_tuple(comp, NULL, NULL, NULL);
+ } else if (pt_is_rule(p0, PN_testlist_comp)) {
+ p = p0;
+ goto testlist_comp;
+ } else {
+ // brackets around 1 item
+ c_assign_tuple(comp, p0, NULL, NULL);
+ }
+ break;
+ }
+
+ default:
+ goto cannot_assign;
+ }
+ return;
+
+ testlist_comp:;
+ // lhs is a sequence
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+ const byte *p1 = pt_next(p0);
+ if (pt_is_rule(p1, PN_testlist_comp_3b)) {
+ // sequence of one item, with trailing comma
+ assert(pt_is_rule_empty(p1));
+ c_assign_tuple(comp, p0, NULL, NULL);
+ } else if (pt_is_rule(p1, PN_testlist_comp_3c)) {
+ // sequence of many items
+ p1 = pt_rule_extract_top(p1, &ptop);
+ c_assign_tuple(comp, p0, p1, ptop);
+ } else if (pt_is_rule(p1, PN_comp_for)) {
+ // TODO can we ever get here? can it be compiled?
+ goto cannot_assign;
+ } else {
+ // sequence with 2 items
+ c_assign_tuple(comp, NULL, p0, pt_next(p1));
+ }
+ }
+ return;
+
+ cannot_assign:
+ compile_syntax_error(comp, p, "can't assign to expression");
+ return;
+
+ bad_aug:
+ compile_syntax_error(comp, p, "illegal expression for augmented assignment");
+}
+
+// stuff for lambda and comprehensions and generators:
+// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
+// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
+// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
+STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
+ assert(n_pos_defaults >= 0);
+ assert(n_kw_defaults >= 0);
+
+ // set flags
+ if (n_kw_defaults > 0) {
+ this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
+ }
+ this_scope->num_def_pos_args = n_pos_defaults;
+
+ // make closed over variables, if any
+ // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
+ int nfree = 0;
+ if (comp->scope_cur->kind != SCOPE_MODULE) {
+ for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
+ id_info_t *id = &comp->scope_cur->id_info[i];
+ if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
+ for (int j = 0; j < this_scope->id_info_len; j++) {
+ id_info_t *id2 = &this_scope->id_info[j];
+ if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
+ // in Micro Python we load closures using LOAD_FAST
+ EMIT_LOAD_FAST(id->qst, id->local_num);
+ nfree += 1;
+ }
+ }
+ }
+ }
+ }
+
+ // make the function/closure
+ if (nfree == 0) {
+ EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
+ } else {
+ EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
+ }
+}
+
+STATIC void compile_funcdef_lambdef_param(compiler_t *comp, const byte *p) {
+ const byte *p_orig = p;
+
+ if (pt_is_rule(p, PN_typedargslist_star)
+ || pt_is_rule(p, PN_varargslist_star)) {
+ comp->have_star = true;
+ /* don't need to distinguish bare from named star
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
+ // bare star
+ } else {
+ // named star
+ }
+ */
+
+ } else if (pt_is_rule(p, PN_typedargslist_dbl_star)
+ || pt_is_rule(p, PN_varargslist_dbl_star)) {
+ // named double star
+ // TODO do we need to do anything with this?
+
+ } else {
+ const byte *p_id;
+ const byte *p_colon = NULL;
+ const byte *p_equal = NULL;
+ if (pt_is_any_id(p)) {
+ // this parameter is just an id
+
+ p_id = p;
+
+ } else if (pt_is_rule(p, PN_typedargslist_name)) {
+ // this parameter has a colon and/or equal specifier
+
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+
+ p_id = p;
+ p = pt_next(p);
+ if (p != ptop) {
+ p_colon = p;
+ p = pt_next(p);
+ if (p != ptop) {
+ p_equal = p;
+ }
+ }
+
+ } else {
+ assert(pt_is_rule(p, PN_varargslist_name)); // should be
+ // this parameter has an equal specifier
+
+ p_id = pt_rule_first(p);
+ p_equal = pt_next(p_id);
+ }
+
+ qstr q_id;
+ pt_extract_id(p_id, &q_id);
+
+ if (p_equal == NULL || pt_is_null(p_equal)) {
+ // this parameter does not have a default value
+
+ // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
+ if (!comp->have_star && comp->num_default_params != 0) {
+ compile_syntax_error(comp, p_orig, "non-default argument follows default argument");
+ return;
+ }
+
+ } else {
+ // this parameter has a default value
+ // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
+
+ if (comp->have_star) {
+ comp->num_dict_params += 1;
+ // in Micro Python we put the default dict parameters into a dictionary using the bytecode
+ if (comp->num_dict_params == 1) {
+ // in Micro Python we put the default positional parameters into a tuple using the bytecode
+ // we need to do this here before we start building the map for the default keywords
+ if (comp->num_default_params > 0) {
+ EMIT_ARG(build_tuple, comp->num_default_params);
+ } else {
+ EMIT(load_null); // sentinel indicating empty default positional args
+ }
+ // first default dict param, so make the map
+ EMIT_ARG(build_map, 0);
+ }
+
+ // compile value then key, then store it to the dict
+ compile_node(comp, p_equal);
+ EMIT_ARG(load_const_str, q_id);
+ EMIT(store_map);
+ } else {
+ comp->num_default_params += 1;
+ compile_node(comp, p_equal);
+ }
+ }
+
+ // TODO p_colon not implemented
+ (void)p_colon;
+ }
+}
+
+STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, const byte *p, pn_kind_t pn_list_kind) {
+ // compile default parameters
+ comp->have_star = false;
+ comp->num_dict_params = 0;
+ comp->num_default_params = 0;
+ apply_to_single_or_list(comp, p, pn_list_kind, compile_funcdef_lambdef_param);
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ return;
+ }
+
+ // in Micro Python we put the default positional parameters into a tuple using the bytecode
+ // the default keywords args may have already made the tuple; if not, do it now
+ if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
+ EMIT_ARG(build_tuple, comp->num_default_params);
+ EMIT(load_null); // sentinel indicating empty default keyword args
+ }
+
+ // make the function
+ close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
+}
+
+// leaves function object on stack
+// returns function name
+STATIC qstr compile_funcdef_helper(compiler_t *comp, const byte *p, uint emit_options) {
+ mp_int_t scope_idx;
+ p = pt_get_small_int(p, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this function
+ scope_new_and_link(comp, scope_idx, SCOPE_FUNCTION, p, emit_options);
+ }
+
+ p = pt_next(p); // skip function name
+
+ // get the scope for this function
+ scope_t *fscope = comp->scopes[scope_idx];
+
+ // compile the function definition
+ compile_funcdef_lambdef(comp, fscope, p, PN_typedargslist);
+
+ // return its name (the 'f' in "def f(...):")
+ return fscope->simple_name;
+}
+
+// leaves class object on stack
+// returns class name
+STATIC qstr compile_classdef_helper(compiler_t *comp, const byte *p, uint emit_options) {
+ mp_int_t scope_idx;
+ p = pt_get_small_int(p, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this class
+ scope_new_and_link(comp, scope_idx, SCOPE_CLASS, p, emit_options);
+ }
+
+ EMIT(load_build_class);
+
+ // scope for this class
+ scope_t *cscope = comp->scopes[scope_idx];
+
+ // compile the class
+ close_over_variables_etc(comp, cscope, 0, 0);
+
+ // get its name
+ EMIT_ARG(load_const_str, cscope->simple_name);
+
+ // second node has parent classes, if any
+ // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
+ const byte *p_parents = pt_next(p);
+ if (pt_is_rule(p_parents, PN_classdef_2)) {
+ p_parents = NULL;
+ }
+ comp->func_arg_is_super = false;
+ compile_trailer_paren_helper(comp, p_parents, false, 2);
+
+ // return its name (the 'C' in class C(...):")
+ return cscope->simple_name;
+}
+
+// returns true if it was a built-in decorator (even if the built-in had an error)
+STATIC bool compile_built_in_decorator(compiler_t *comp, const byte *p, const byte *ptop, uint *emit_options) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ if (qst != MP_QSTR_micropython) {
+ return false;
+ }
+
+ if (p >= ptop || pt_next(p) != ptop) {
+ compile_syntax_error(comp, NULL, "invalid micropython decorator");
+ return true;
+ }
+
+ qstr attr;
+ p = pt_extract_id(p, &attr);
+ if (attr == MP_QSTR_bytecode) {
+ *emit_options = MP_EMIT_OPT_BYTECODE;
+#if MICROPY_EMIT_NATIVE
+ } else if (attr == MP_QSTR_native) {
+ *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
+ } else if (attr == MP_QSTR_viper) {
+ *emit_options = MP_EMIT_OPT_VIPER;
+#endif
+#if MICROPY_EMIT_INLINE_THUMB
+ } else if (attr == MP_QSTR_asm_thumb) {
+ *emit_options = MP_EMIT_OPT_ASM_THUMB;
+#endif
+ } else {
+ compile_syntax_error(comp, NULL, "invalid micropython decorator");
+ }
+
+ return true;
+}
+
+STATIC void compile_decorated(compiler_t *comp, const byte *p, const byte *ptop) {
+ // get the list of decorators
+ ptop = mp_parse_node_extract_list(&p, PN_decorators);
+
+ // inherit emit options for this function/class definition
+ uint emit_options = comp->scope_cur->emit_options;
+
+ // compile each decorator
+ int num_non_built_in_decorators = 0;
+ while (p != ptop) {
+ assert(pt_is_rule(p, PN_decorator)); // should be
+
+ const byte *ptop_decorator;
+ p = pt_rule_extract_top(p, &ptop_decorator);
+
+ // first node contains the decorator function, which is a dotted name
+ const byte *ptop_dotted_name = mp_parse_node_extract_list(&p, PN_dotted_name);
+
+ // check for built-in decorators
+ if (compile_built_in_decorator(comp, p, ptop_dotted_name, &emit_options)) {
+ // this was a built-in
+
+ } else {
+ // not a built-in, compile normally
+
+ num_non_built_in_decorators += 1;
+
+ // compile the decorator function
+ p = compile_node(comp, p);
+ while (p != ptop_dotted_name) {
+ assert(pt_is_any_id(p)); // should be
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ EMIT_ARG(load_attr, qst);
+ }
+
+ // nodes[1] contains arguments to the decorator function, if any
+ if (!pt_is_null_with_top(p, ptop_decorator)) {
+ // call the decorator function with the arguments in nodes[1]
+ comp->func_arg_is_super = false;
+ compile_node(comp, p);
+ }
+ }
+
+ p = ptop_decorator;
+ }
+
+ // compile the body (funcdef or classdef) and get its name
+ qstr body_name = 0;
+ p = pt_rule_first(ptop); // skip the rule header
+ if (pt_is_rule(ptop, PN_funcdef)) {
+ body_name = compile_funcdef_helper(comp, p, emit_options);
+ } else {
+ assert(pt_is_rule(ptop, PN_classdef)); // should be
+ body_name = compile_classdef_helper(comp, p, emit_options);
+ }
+
+ // call each decorator
+ while (num_non_built_in_decorators-- > 0) {
+ EMIT_ARG(call_function, 1, 0, 0);
+ }
+
+ // store func/class object into name
+ compile_store_id(comp, body_name);
+}
+
+STATIC void compile_funcdef(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ qstr fname = compile_funcdef_helper(comp, p, comp->scope_cur->emit_options);
+ // store function object into function name
+ compile_store_id(comp, fname);
+}
+
+STATIC void c_del_stmt(compiler_t *comp, const byte *p) {
+ if (pt_is_any_id(p)) {
+ qstr id;
+ pt_extract_id(p, &id);
+ compile_delete_id(comp, id);
+ } else if (pt_is_rule(p, PN_power)) {
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p, &ptop);
+
+ const byte *p1 = compile_node(comp, p0); // base of the power node
+
+ if (pt_is_rule(p1, PN_power_trailers)) {
+ const byte *p1top;
+ p1 = pt_rule_extract_top(p1, &p1top);
+ for (;;) {
+ const byte *p1next = pt_next(p1);
+ if (p1next == p1top) {
+ break;
+ }
+ compile_node(comp, p1);
+ p1 = p1next;
+ }
+ // p1 now points to final trailer for delete
+ }
+
+ const byte *p2;
+ if (pt_is_rule(p1, PN_trailer_bracket)) {
+ p2 = compile_node(comp, pt_rule_first(p1));
+ EMIT(delete_subscr);
+ } else if (pt_is_rule(p1, PN_trailer_period)) {
+ qstr id;
+ p2 = pt_extract_id(pt_rule_first(p1), &id);
+ EMIT_ARG(delete_attr, id);
+ } else {
+ goto cannot_delete;
+ }
+
+ if (!pt_is_null_with_top(p2, ptop)) {
+ goto cannot_delete;
+ }
+ } else if (pt_is_rule(p, PN_atom_paren)) {
+ p = pt_rule_first(p);
+ if (pt_is_rule(p, PN_testlist_comp)) {
+ // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
+ // or, simplify the logic here my making the parser simplify everything to a list
+ const byte *p0 = pt_rule_first(p);
+ c_del_stmt(comp, p0);
+
+ const byte *p1 = pt_next(p0);
+ if (pt_is_rule(p1, PN_testlist_comp_3b)) {
+ // sequence of one item, with trailing comma
+ assert(pt_is_rule_empty(p1));
+ } else if (pt_is_rule(p1, PN_testlist_comp_3c)) {
+ // sequence of many items
+ const byte *ptop;
+ p1 = pt_rule_extract_top(p1, &ptop);
+ while (p1 != ptop) {
+ c_del_stmt(comp, p1);
+ p1 = pt_next(p1);
+ }
+ } else if (pt_is_rule(p1, PN_comp_for)) {
+ // TODO not implemented; can't del comprehension? can we get here?
+ goto cannot_delete;
+ } else {
+ // sequence with 2 items
+ c_del_stmt(comp, p1);
+ }
+ } else {
+ // tuple with 1 element
+ c_del_stmt(comp, p);
+ }
+ } else {
+ // TODO is there anything else to implement?
+ goto cannot_delete;
+ }
+
+ return;
+
+cannot_delete:
+ compile_syntax_error(comp, p, "can't delete expression");
+}
+
+STATIC void compile_del_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ apply_to_single_or_list(comp, p, PN_exprlist, c_del_stmt);
+}
+
+STATIC void compile_break_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ if (comp->break_label == 0) {
+ compile_syntax_error(comp, p, "'break' outside loop");
+ }
+ assert(comp->cur_except_level >= comp->break_continue_except_level);
+ EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
+}
+
+STATIC void compile_continue_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ if (comp->continue_label == 0) {
+ compile_syntax_error(comp, p, "'continue' outside loop");
+ }
+ assert(comp->cur_except_level >= comp->break_continue_except_level);
+ EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
+}
+
+STATIC void compile_return_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->scope_cur->kind != SCOPE_FUNCTION) {
+ compile_syntax_error(comp, NULL, "'return' outside function");
+ return;
+ }
+ if (pt_is_null_with_top(p, ptop)) {
+ // no argument to 'return', so return None
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ #if 0
+ // TODO do we need this optimisation? i guess it's hardly used
+ } else if (pt_is_rule(p, PN_test_if_expr)) {
+ // special case when returning an if-expression; to match CPython optimisation
+ mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
+ mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];
+
+ uint l_fail = comp_next_label(comp);
+ c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
+ compile_node(comp, pns_test_if_expr->nodes[0]); // success value
+ EMIT(return_value);
+ EMIT_ARG(label_assign, l_fail);
+ compile_node(comp, pns_test_if_else->nodes[1]); // failure value
+ #endif
+ } else {
+ compile_node(comp, p);
+ }
+ EMIT(return_value);
+}
+
+STATIC void compile_yield_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_node(comp, p);
+ EMIT(pop_top);
+}
+
+STATIC void compile_raise_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // raise
+ EMIT_ARG(raise_varargs, 0);
+ } else if (pt_is_rule(p, PN_raise_stmt_arg)) {
+ // raise x from y
+ p = pt_rule_first(p);
+ p = compile_node(comp, p);
+ compile_node(comp, p);
+ EMIT_ARG(raise_varargs, 2);
+ } else {
+ // raise x
+ compile_node(comp, p);
+ EMIT_ARG(raise_varargs, 1);
+ }
+}
+
+// q_base holds the base of the name
+// eg a -> q_base=a
+// a.b.c -> q_base=a
+STATIC void do_import_name(compiler_t *comp, const byte *p, qstr *q_base) {
+ bool is_as = false;
+ if (p != NULL && pt_is_rule(p, PN_dotted_as_name)) {
+ // a name of the form x as y; unwrap it
+ p = pt_rule_first(p); // point to 'x'
+ pt_extract_id(pt_next(p), q_base); // extract 'y'
+ is_as = true;
+ }
+ if (p == NULL || pt_is_null(p)) {
+ // empty name (eg, from . import x)
+ *q_base = MP_QSTR_;
+ EMIT_ARG(import_name, MP_QSTR_); // import the empty string
+ } else if (pt_is_any_id(p)) {
+ // just a simple name
+ qstr q_full;
+ pt_extract_id(p, &q_full);
+ if (!is_as) {
+ *q_base = q_full;
+ }
+ EMIT_ARG(import_name, q_full);
+ } else {
+ // a name of the form a.b.c
+ assert(pt_is_rule(p, PN_dotted_name)); // should be
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+
+ if (!is_as) {
+ pt_extract_id(p, q_base);
+ }
+
+ // work out string length
+ int len = -1;
+ for (const byte *p2 = p; p2 != ptop;) {
+ qstr qst;
+ p2 = pt_extract_id(p2, &qst);
+ len += 1 + qstr_len(qst);
+ }
+
+ // build string
+ byte *q_ptr;
+ byte *str_dest = qstr_build_start(len, &q_ptr);
+ for (const byte *p2 = p; p2 != ptop;) {
+ if (p2 > p) {
+ *str_dest++ = '.';
+ }
+ qstr qst;
+ p2 = pt_extract_id(p2, &qst);
+ mp_uint_t str_src_len;
+ const byte *str_src = qstr_data(qst, &str_src_len);
+ memcpy(str_dest, str_src, str_src_len);
+ str_dest += str_src_len;
+ }
+ qstr q_full = qstr_build_end(q_ptr);
+ EMIT_ARG(import_name, q_full);
+ if (is_as) {
+ for (const byte *p2 = pt_next(p); p2 != ptop;) {
+ qstr qst;
+ p2 = pt_extract_id(p2, &qst);
+ EMIT_ARG(load_attr, qst);
+ }
+ }
+ }
+}
+
+STATIC void compile_dotted_as_name(compiler_t *comp, const byte *p) {
+ EMIT_ARG(load_const_small_int, 0); // level 0 import
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
+ qstr q_base;
+ do_import_name(comp, p, &q_base);
+ compile_store_id(comp, q_base);
+}
+
+STATIC void compile_import_name(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ apply_to_single_or_list(comp, p, PN_dotted_as_names, compile_dotted_as_name);
+}
+
+STATIC void compile_import_from(compiler_t *comp, const byte *p, const byte *ptop) {
+ const byte *p_import_source = p;
+
+ // extract the preceeding .'s (if any) for a relative import, to compute the import level
+ uint import_level = 0;
+ do {
+ const byte *p_rel;
+ if (pt_is_any_tok(p_import_source) || pt_is_rule(p_import_source, PN_one_or_more_period_or_ellipsis)) {
+ // This covers relative imports with dots only like "from .. import"
+ p_rel = p_import_source;
+ p_import_source = NULL;
+ } else if (pt_is_rule(p_import_source, PN_import_from_2b)) {
+ // This covers relative imports starting with dot(s) like "from .foo import"
+ p_rel = pt_rule_first(p_import_source);
+ p_import_source = pt_next(p_rel);
+ } else {
+ // Not a relative import
+ break;
+ }
+
+ // get the list of . and/or ...'s
+ const byte *p_rel_top = mp_parse_node_extract_list(&p_rel, PN_one_or_more_period_or_ellipsis);
+
+ // count the total number of .'s
+ while (p_rel != p_rel_top) {
+ if (pt_is_tok(p_rel, MP_TOKEN_DEL_PERIOD)) {
+ import_level++;
+ } else {
+ // should be an MP_TOKEN_ELLIPSIS
+ import_level += 3;
+ }
+ p_rel = pt_next(p_rel);
+ }
+ } while (0);
+
+ p = pt_next(p);
+
+ if (pt_is_tok(p, MP_TOKEN_OP_STAR)) {
+ EMIT_ARG(load_const_small_int, import_level);
+
+ // build the "fromlist" tuple
+ EMIT_ARG(load_const_str, MP_QSTR__star_);
+ EMIT_ARG(build_tuple, 1);
+
+ // do the import
+ qstr dummy_q;
+ do_import_name(comp, p_import_source, &dummy_q);
+ EMIT(import_star);
+
+ } else {
+ EMIT_ARG(load_const_small_int, import_level);
+
+ // build the "fromlist" tuple
+ ptop = mp_parse_node_extract_list(&p, PN_import_as_names);
+ uint n = 0;
+ for (const byte *p_list = p; p_list < ptop; p_list = pt_next(p_list), ++n) {
+ assert(pt_is_rule(p_list, PN_import_as_name));
+ qstr id2;
+ pt_extract_id(pt_rule_first(p_list), &id2);
+ EMIT_ARG(load_const_str, id2);
+ }
+ EMIT_ARG(build_tuple, n);
+
+ // do the import
+ qstr dummy_q;
+ do_import_name(comp, p_import_source, &dummy_q);
+ for (const byte *p_list = p; p_list < ptop;) {
+ assert(pt_is_rule(p_list, PN_import_as_name));
+ const byte *p_list_top;
+ p_list = pt_rule_extract_top(p_list, &p_list_top);
+ qstr id2;
+ p_list = pt_extract_id(p_list, &id2);
+ EMIT_ARG(import_from, id2);
+ if (p_list == p_list_top) {
+ compile_store_id(comp, id2);
+ } else {
+ qstr id3;
+ p_list = pt_extract_id(p_list, &id3);
+ compile_store_id(comp, id3);
+ }
+ }
+ EMIT(pop_top);
+ }
+}
+
+STATIC void compile_declare_global(compiler_t *comp, const byte *p_for_err, qstr qst) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
+ if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
+ compile_syntax_error(comp, p_for_err, "identifier redefined as global");
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+
+ // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
+ id_info = scope_find_global(comp->scope_cur, qst);
+ if (id_info != NULL) {
+ id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+ }
+}
+
+STATIC void compile_global_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ const byte *p_orig = p;
+ ptop = mp_parse_node_extract_list(&p, PN_name_list);
+ while (p != ptop) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ compile_declare_global(comp, p_orig, qst);
+ }
+ }
+}
+
+STATIC void compile_declare_nonlocal(compiler_t *comp, const byte *p_for_err, qstr qst) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
+ if (!added && id_info->kind != ID_INFO_KIND_FREE) {
+ compile_syntax_error(comp, p_for_err, "identifier redefined as nonlocal");
+ return;
+ }
+ id_info_t *id_info2 = scope_find_local_in_parent(comp->scope_cur, qst);
+ if (id_info2 == NULL || !(id_info2->kind == ID_INFO_KIND_LOCAL
+ || id_info2->kind == ID_INFO_KIND_CELL || id_info2->kind == ID_INFO_KIND_FREE)) {
+ compile_syntax_error(comp, p_for_err, "no binding for nonlocal found");
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_FREE;
+ scope_close_over_in_parents(comp->scope_cur, qst);
+}
+
+STATIC void compile_nonlocal_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->pass == MP_PASS_SCOPE) {
+ if (comp->scope_cur->kind == SCOPE_MODULE) {
+ compile_syntax_error(comp, p, "can't declare nonlocal in outer code");
+ return;
+ }
+ const byte *p_orig = p;
+ ptop = mp_parse_node_extract_list(&p, PN_name_list);
+ while (p != ptop) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ compile_declare_nonlocal(comp, p_orig, qst);
+ }
+ }
+}
+
+STATIC void compile_assert_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ uint l_end = comp_next_label(comp);
+ p = c_if_cond(comp, p, true, l_end);
+ EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
+ if (!pt_is_null_with_top(p, ptop)) {
+ // assertion message
+ compile_node(comp, p);
+ EMIT_ARG(call_function, 1, 0, 0);
+ }
+ EMIT_ARG(raise_varargs, 1);
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_if_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ // TODO proper and/or short circuiting
+
+ uint l_end = comp_next_label(comp);
+
+ // optimisation: don't emit anything when "if False"
+ if (node_is_const_false(p)) {
+ p = pt_next(p); // skip if condition
+ p = pt_next(p); // skip if block
+ } else {
+ uint l_fail = comp_next_label(comp);
+ bool if_true = node_is_const_true(p);
+ p = c_if_cond(comp, p, false, l_fail); // if condition
+
+ p = compile_node(comp, p); // if block
+
+ // optimisation: skip everything else when "if True"
+ if (if_true) {
+ goto done;
+ }
+
+ if (
+ // optimisation: don't jump over non-existent elif/else blocks
+ !(pt_is_null_with_top(p, ptop) && pt_is_null_with_top(pt_next(p), ptop))
+ // optimisation: don't jump if last instruction was return
+ && !EMIT(last_emit_was_return_value)
+ ) {
+ // jump over elif/else blocks
+ EMIT_ARG(jump, l_end);
+ }
+
+ EMIT_ARG(label_assign, l_fail);
+ }
+
+ // at this point p points to elif node (which may not exist)
+
+ // compile elif blocks (if any)
+ if (p != ptop) {
+ const byte *p_else_top = mp_parse_node_extract_list(&p, PN_if_stmt_elif_list);
+ while (p != p_else_top) {
+ assert(pt_is_rule(p, PN_if_stmt_elif)); // should be
+ p = pt_rule_first(p);
+
+ // optimisation: don't emit anything when "if False"
+ if (node_is_const_false(p)) {
+ p = pt_next(p); // skip elif condition
+ p = pt_next(p); // skip elif block
+ } else {
+ uint l_fail = comp_next_label(comp);
+ bool elif_true = node_is_const_true(p);
+ p = c_if_cond(comp, p, false, l_fail); // elif condition
+
+ p = compile_node(comp, p); // elif block
+
+ // optimisation: skip everything else when "elif True"
+ if (elif_true) {
+ goto done;
+ }
+
+ // optimisation: don't jump if last instruction was return
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(jump, l_end);
+ }
+ EMIT_ARG(label_assign, l_fail);
+ }
+ }
+
+ // compile else block (if any)
+ if (p != ptop) {
+ compile_node(comp, p);
+ }
+ }
+
+done:
+ EMIT_ARG(label_assign, l_end);
+}
+
+#define START_BREAK_CONTINUE_BLOCK \
+ uint16_t old_break_label = comp->break_label; \
+ uint16_t old_continue_label = comp->continue_label; \
+ uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
+ uint break_label = comp_next_label(comp); \
+ uint continue_label = comp_next_label(comp); \
+ comp->break_label = break_label; \
+ comp->continue_label = continue_label; \
+ comp->break_continue_except_level = comp->cur_except_level;
+
+#define END_BREAK_CONTINUE_BLOCK \
+ comp->break_label = old_break_label; \
+ comp->continue_label = old_continue_label; \
+ comp->break_continue_except_level = old_break_continue_except_level;
+
+STATIC void compile_while_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ START_BREAK_CONTINUE_BLOCK
+
+ const byte *p_body = pt_next(p);
+ const byte *p_else = pt_next(p_body);
+
+ if (!node_is_const_false(p)) { // optimisation: don't emit anything for "while False"
+ uint top_label = comp_next_label(comp);
+ if (!node_is_const_true(p)) { // optimisation: don't jump to cond for "while True"
+ EMIT_ARG(jump, continue_label);
+ }
+ EMIT_ARG(label_assign, top_label);
+ compile_node(comp, p_body); // body
+ EMIT_ARG(label_assign, continue_label);
+ c_if_cond(comp, p, true, top_label); // condition
+ }
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ if (p_else != ptop) {
+ compile_node(comp, p_else); // else
+ }
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+// This function compiles an optimised for-loop of the form:
+// for <var> in range(<start>, <end>, <step>):
+// <body>
+// else:
+// <else>
+// <var> must be an identifier and <step> must be a small-int.
+//
+// Semantics of for-loop require:
+// - final failing value should not be stored in the loop variable
+// - if the loop never runs, the loop variable should never be assigned
+// - assignments to <var>, <end> or <step> in the body do not alter the loop
+// (<step> is a constant for us, so no need to worry about it changing)
+//
+// If <end> is a small-int, then the stack during the for-loop contains just
+// the current value of <var>. Otherwise, the stack contains <end> then the
+// current value of <var>.
+STATIC void compile_for_stmt_optimised_range(compiler_t *comp, const byte *pn_var,
+ const byte *pn_start, const byte *pn_end, mp_int_t step,
+ const byte *pn_body, const byte *pn_else) {
+
+ START_BREAK_CONTINUE_BLOCK
+
+ uint top_label = comp_next_label(comp);
+ uint entry_label = comp_next_label(comp);
+
+ // put the end value on the stack if it's not a small-int constant
+ bool end_on_stack = !pt_is_small_int(pn_end);
+ if (end_on_stack) {
+ compile_node(comp, pn_end);
+ }
+
+ // compile: start
+ compile_node(comp, pn_start);
+
+ EMIT_ARG(jump, entry_label);
+ EMIT_ARG(label_assign, top_label);
+
+ // duplicate next value and store it to var
+ EMIT(dup_top);
+ c_assign(comp, pn_var, ASSIGN_STORE);
+
+ // compile body
+ compile_node(comp, pn_body);
+
+ EMIT_ARG(label_assign, continue_label);
+
+ // compile: var + step
+ EMIT_ARG(load_const_small_int, step);
+ EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
+
+ EMIT_ARG(label_assign, entry_label);
+
+ // compile: if var <cond> end: goto top
+ if (end_on_stack) {
+ EMIT(dup_top_two);
+ EMIT(rot_two);
+ } else {
+ EMIT(dup_top);
+ compile_node(comp, pn_end);
+ }
+ if (step >= 0) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
+ } else {
+ EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
+ }
+ EMIT_ARG(pop_jump_if, true, top_label);
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ if (pn_else != NULL) {
+ compile_node(comp, pn_else);
+ }
+
+ EMIT_ARG(label_assign, break_label);
+
+ // discard final value of var that failed the loop condition
+ EMIT(pop_top);
+
+ // discard <end> value if it's on the stack
+ if (end_on_stack) {
+ EMIT(pop_top);
+ }
+}
+
+STATIC void compile_for_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
+ // this is actually slower, but uses no heap memory
+ // for viper it will be much, much faster
+ if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ pt_is_any_id(p)
+ && pt_is_rule(pt_next(p), PN_power)) {
+ const byte *p_it_top;
+ const byte *p_it0 = pt_rule_extract_top(pt_next(p), &p_it_top);
+ if (!pt_is_id(p_it0, MP_QSTR_range)) {
+ goto optimise_fail;
+ }
+ const byte *p_it1 = pt_next(p_it0);
+ if (pt_is_rule(p_it1, PN_trailer_paren)
+ && !pt_is_rule_empty(p_it1)
+ && pt_next(p_it1) == p_it_top) {
+ // iterator is of the form range(...) with at least 1 arg
+ const byte *p_range_args = pt_rule_first(p_it1);
+ const byte *p_range_args_top = mp_parse_node_extract_list(&p_range_args, PN_arglist);
+ const byte *p_start = pt_const_int0;
+ const byte *p_end = p_range_args;
+ mp_int_t step = 1;
+ p_range_args = pt_next(p_range_args);
+ if (p_range_args != p_range_args_top) {
+ // range has at least 2 args
+ p_start = p_end;
+ p_end = p_range_args;
+ p_range_args = pt_next(p_range_args);
+ if (p_range_args != p_range_args_top) {
+ // range has at least 3 args
+ // We need to know sign of step. This is possible only if it's constant
+ if (!pt_is_small_int(p_range_args)) {
+ goto optimise_fail;
+ }
+ p_range_args = pt_get_small_int(p_range_args, &step);
+ if (p_range_args != p_range_args_top) {
+ // range has at least 4 args, so don't know how to optimise it
+ goto optimise_fail;
+ }
+ }
+ }
+ // can optimise
+ const byte *p_body = p_it_top;
+ const byte *p_else = pt_next(p_body);
+ if (p_else == ptop) {
+ p_else = NULL;
+ }
+ compile_for_stmt_optimised_range(comp, p, p_start, p_end, step, p_body, p_else);
+ return;
+ }
+ }
+optimise_fail:;
+
+ START_BREAK_CONTINUE_BLOCK
+ comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
+
+ uint pop_label = comp_next_label(comp);
+
+ const byte *p_it = pt_next(p);
+ const byte *p_body = compile_node(comp, p_it); // iterator
+ EMIT(get_iter);
+ EMIT_ARG(label_assign, continue_label);
+ EMIT_ARG(for_iter, pop_label);
+ c_assign(comp, p, ASSIGN_STORE); // variable
+ const byte *p_else = compile_node(comp, p_body); // body
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(jump, continue_label);
+ }
+ EMIT_ARG(label_assign, pop_label);
+ EMIT(for_iter_end);
+
+ // break/continue apply to outer loop (if any) in the else block
+ END_BREAK_CONTINUE_BLOCK
+
+ if (p_else != ptop) {
+ compile_node(comp, p_else); // else
+ }
+
+ EMIT_ARG(label_assign, break_label);
+}
+
+STATIC void compile_try_except(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else) {
+ // setup code
+ uint l1 = comp_next_label(comp);
+ uint success_label = comp_next_label(comp);
+
+ EMIT_ARG(setup_except, l1);
+ compile_increase_except_level(comp);
+
+ compile_node(comp, p_body); // body
+ EMIT(pop_block);
+ EMIT_ARG(jump, success_label); // jump over exception handler
+
+ EMIT_ARG(label_assign, l1); // start of exception handler
+ EMIT(start_except_handler);
+
+ uint l2 = comp_next_label(comp);
+
+ while (p_except != p_except_top) {
+ assert(pt_is_rule(p_except, PN_try_stmt_except)); // should be
+ p_except = pt_rule_first(p_except);
+
+ qstr qstr_exception_local = 0;
+ uint end_finally_label = comp_next_label(comp);
+
+ if (pt_is_null(p_except)) {
+ // this is a catch all exception handler
+ if (pt_next(pt_next(p_except)) != p_except_top) {
+ compile_syntax_error(comp, p_except, "default 'except:' must be last");
+ compile_decrease_except_level(comp);
+ return;
+ }
+ } else {
+ // this exception handler requires a match to a certain type of exception
+ const byte *p_exception_expr = p_except;
+ if (pt_is_rule(p_exception_expr, PN_try_stmt_as_name)) {
+ // handler binds the exception to a local
+ p_exception_expr = pt_rule_first(p_exception_expr);
+ pt_extract_id(pt_next(p_exception_expr), &qstr_exception_local);
+ }
+ EMIT(dup_top);
+ compile_node(comp, p_exception_expr);
+ EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
+ EMIT_ARG(pop_jump_if, false, end_finally_label);
+ }
+
+ p_except = pt_next(p_except);
+
+ EMIT(pop_top);
+
+ if (qstr_exception_local == 0) {
+ EMIT(pop_top);
+ } else {
+ compile_store_id(comp, qstr_exception_local);
+ }
+
+ EMIT(pop_top);
+
+ uint l3 = 0;
+ if (qstr_exception_local != 0) {
+ l3 = comp_next_label(comp);
+ EMIT_ARG(setup_finally, l3);
+ compile_increase_except_level(comp);
+ }
+ p_except = compile_node(comp, p_except);
+ if (qstr_exception_local != 0) {
+ EMIT(pop_block);
+ }
+ EMIT(pop_except);
+ if (qstr_exception_local != 0) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l3);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ compile_store_id(comp, qstr_exception_local);
+ compile_delete_id(comp, qstr_exception_local);
+
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+ }
+ EMIT_ARG(jump, l2);
+ EMIT_ARG(label_assign, end_finally_label);
+ EMIT_ARG(adjust_stack_size, 3); // stack adjust for the 3 exception items
+ }
+
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+ EMIT(end_except_handler);
+
+ EMIT_ARG(label_assign, success_label);
+ if (p_else != NULL) {
+ compile_node(comp, p_else); // else block
+ }
+ EMIT_ARG(label_assign, l2);
+}
+
+STATIC void compile_try_finally(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else, const byte *p_finally) {
+ uint l_finally_block = comp_next_label(comp);
+
+ EMIT_ARG(setup_finally, l_finally_block);
+ compile_increase_except_level(comp);
+
+ if (p_except == NULL) {
+ assert(p_else == NULL);
+ EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
+ compile_node(comp, p_body);
+ EMIT_ARG(adjust_stack_size, -3);
+ } else {
+ compile_try_except(comp, p_body, p_except, p_except_top, p_else);
+ }
+ EMIT(pop_block);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l_finally_block);
+ compile_node(comp, p_finally);
+
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+}
+
+STATIC void compile_try_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ const byte* p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_try_stmt_except) || pt_is_rule(p1, PN_try_stmt_except_list)) {
+ // just try-except
+ const byte *p1_top = mp_parse_node_extract_list(&p1, PN_try_stmt_except_list);
+ compile_try_except(comp, p, p1, p1_top, NULL);
+ } else if (pt_is_rule(p1, PN_try_stmt_except_and_more)) {
+ // try-except and possibly else and/or finally
+ const byte *p1_top;
+ const byte *p1_p0 = pt_rule_extract_top(p1, &p1_top);
+ const byte *p1_p1 = mp_parse_node_extract_list(&p1_p0, PN_try_stmt_except_list);
+ if (pt_next(p1_p1) == p1_top) {
+ // no finally, but have else
+ compile_try_except(comp, p, p1_p0, p1_p1, p1_p1);
+ } else {
+ // have finally, may or may not have else
+ compile_try_finally(comp, p, p1_p0, p1_p1, p1_p1, pt_next(p1_p1));
+ }
+ } else {
+ // just try-finally
+ compile_try_finally(comp, p, NULL, NULL, NULL, p1);
+ }
+}
+
+STATIC void compile_with_stmt_helper(compiler_t *comp, const byte *n_pre, const byte *p_body) {
+ if (n_pre >= p_body) {
+ // no more pre-bits, compile the body of the with
+ compile_node(comp, p_body);
+ } else {
+ uint l_end = comp_next_label(comp);
+ if (pt_is_rule(n_pre, PN_with_item)) {
+ // this pre-bit is of the form "a as b"
+ const byte *p = pt_rule_first(n_pre);
+ p = compile_node(comp, p);
+ EMIT_ARG(setup_with, l_end);
+ c_assign(comp, p, ASSIGN_STORE);
+ n_pre = pt_next(n_pre);
+ } else {
+ // this pre-bit is just an expression
+ n_pre = compile_node(comp, n_pre);
+ EMIT_ARG(setup_with, l_end);
+ EMIT(pop_top);
+ }
+ compile_increase_except_level(comp);
+ // compile additional pre-bits and the body
+ compile_with_stmt_helper(comp, n_pre, p_body);
+ // finish this with block
+ EMIT(pop_block);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(label_assign, l_end);
+ EMIT(with_cleanup);
+ compile_decrease_except_level(comp);
+ EMIT(end_finally);
+ }
+}
+
+STATIC void compile_with_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
+ ptop = mp_parse_node_extract_list(&p, PN_with_stmt_list);
+
+ // compile in a nested fashion
+ compile_with_stmt_helper(comp, p, ptop);
+}
+
+STATIC void compile_expr_stmt(compiler_t *comp, const byte *p, const byte *ptop) {
+ const byte *p_n1 = pt_next(p);
+
+ if (pt_is_null_with_top(p_n1, ptop)) {
+ if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
+ // for REPL, evaluate then print the expression
+ compile_load_id(comp, MP_QSTR___repl_print__);
+ compile_node(comp, p);
+ EMIT_ARG(call_function, 1, 0, 0);
+ EMIT(pop_top);
+
+ } else {
+ #if 0
+ // for non-REPL, evaluate then discard the expression
+ if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
+ // do nothing with a lonely constant
+ } else
+ #endif
+ {
+ compile_node(comp, p); // just an expression
+ EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
+ }
+ }
+ } else if (pt_is_rule(p_n1, PN_expr_stmt_augassign)) {
+ c_assign(comp, p, ASSIGN_AUG_LOAD); // lhs load for aug assign
+ p_n1 = pt_rule_first(p_n1);
+ assert(pt_is_any_tok(p_n1));
+ byte tok;
+ p_n1 = pt_tok_extract(p_n1, &tok);
+ mp_binary_op_t op;
+ switch (tok) {
+ case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
+ case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
+ case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
+ case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
+ case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
+ case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
+ case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
+ case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
+ case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
+ case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
+ case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
+ case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
+ }
+ compile_node(comp, p_n1); // rhs
+ EMIT_ARG(binary_op, op);
+ c_assign(comp, p, ASSIGN_AUG_STORE); // lhs store for aug assign
+ } else if (pt_is_rule(p_n1, PN_expr_stmt_assign_list)) {
+ const byte *p_n1_top;
+ p_n1 = pt_rule_extract_top(p_n1, &p_n1_top);
+ const byte *p_rhs = NULL;
+ for (const byte *pp = p_n1; pp != p_n1_top; pp = pt_next(pp)) {
+ p_rhs = pp;
+ }
+ compile_node(comp, p_rhs); // rhs
+ // following CPython, we store left-most first
+ //if (num rhs > 1) { always true?
+ EMIT(dup_top);
+ //}
+ c_assign(comp, p, ASSIGN_STORE); // lhs store
+ for (const byte *pp = p_n1; pp != p_rhs;) {
+ const byte *pp_next = pt_next(pp);
+ if (pp_next != p_rhs) {
+ EMIT(dup_top);
+ }
+ c_assign(comp, pp, ASSIGN_STORE); // middle store
+ pp = pp_next;
+ }
+ } else {
+ // single assignment
+ #if 0
+ if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) {
+ // optimisation for a, b = c, d
+ mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) {
+ // can't optimise when it's a star expression on the lhs
+ goto no_optimisation;
+ }
+ compile_node(comp, pns10->nodes[0]); // rhs
+ compile_node(comp, pns10->nodes[1]); // rhs
+ EMIT(rot_two);
+ c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
+ } else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3
+ && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) {
+ // optimisation for a, b, c = d, e, f
+ mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0];
+ mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) {
+ // can't optimise when it's a star expression on the lhs
+ goto no_optimisation;
+ }
+ compile_node(comp, pns10->nodes[0]); // rhs
+ compile_node(comp, pns10->nodes[1]); // rhs
+ compile_node(comp, pns10->nodes[2]); // rhs
+ EMIT(rot_three);
+ EMIT(rot_two);
+ c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
+ c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
+ } else
+ #endif
+ {
+ //no_optimisation:
+ compile_node(comp, p_n1); // rhs
+ c_assign(comp, p, ASSIGN_STORE); // lhs store
+ }
+ }
+}
+
+STATIC void compile_test_if_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ const byte *p_test_if_else = pt_next(p);
+ assert(p_test_if_else != ptop && pt_is_rule(p_test_if_else, PN_test_if_else));
+ p_test_if_else = pt_rule_first(p_test_if_else);
+
+ uint l_fail = comp_next_label(comp);
+ uint l_end = comp_next_label(comp);
+ p_test_if_else = c_if_cond(comp, p_test_if_else, false, l_fail); // condition
+ compile_node(comp, p); // success value
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(label_assign, l_fail);
+ EMIT_ARG(adjust_stack_size, -1); // adjust stack size
+ compile_node(comp, p_test_if_else); // failure value
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_lambdef(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ mp_int_t scope_idx;
+ p = pt_get_small_int(p, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this lambda
+ scope_new_and_link(comp, scope_idx, SCOPE_LAMBDA, p, comp->scope_cur->emit_options);
+ }
+
+ // get the scope for this lambda
+ scope_t *this_scope = comp->scopes[scope_idx];
+
+ // compile the lambda definition
+ compile_funcdef_lambdef(comp, this_scope, p, PN_varargslist);
+}
+
+STATIC void compile_or_and_test(compiler_t *comp, const byte *p, const byte *ptop, bool cond) {
+ uint l_end = comp_next_label(comp);
+ while (p != ptop) {
+ p = compile_node(comp, p);
+ if (p != ptop) {
+ EMIT_ARG(jump_if_or_pop, cond, l_end);
+ }
+ }
+ EMIT_ARG(label_assign, l_end);
+}
+
+STATIC void compile_or_test(compiler_t *comp, const byte *p, const byte *ptop) {
+ compile_or_and_test(comp, p, ptop, true);
+}
+
+STATIC void compile_and_test(compiler_t *comp, const byte *p, const byte *ptop) {
+ compile_or_and_test(comp, p, ptop, false);
+}
+
+STATIC void compile_not_test_2(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_node(comp, p);
+ EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
+}
+
+STATIC void compile_comparison(compiler_t *comp, const byte *p, const byte *ptop) {
+ int num_nodes = pt_num_nodes(p, ptop);
+ p = compile_node(comp, p);
+ bool multi = (num_nodes > 3);
+ uint l_fail = 0;
+ if (multi) {
+ l_fail = comp_next_label(comp);
+ }
+ for (int i = 1; i + 1 < num_nodes; i += 2) {
+ mp_binary_op_t op;
+ if (pt_is_any_tok(p)) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ switch (tok) {
+ case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
+ case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
+ case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
+ case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
+ case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
+ case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
+ case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
+ }
+ } else {
+ if (pt_is_rule(p, PN_comp_op_not_in)) {
+ op = MP_BINARY_OP_NOT_IN;
+ } else {
+ assert(pt_is_rule(p, PN_comp_op_is)); // should be
+ if (pt_is_rule_empty(p)) {
+ op = MP_BINARY_OP_IS;
+ } else {
+ op = MP_BINARY_OP_IS_NOT;
+ }
+ }
+ p = pt_next(p);
+ }
+
+ p = compile_node(comp, p);
+
+ if (i + 2 < num_nodes) {
+ EMIT(dup_top);
+ EMIT(rot_three);
+ }
+
+ EMIT_ARG(binary_op, op);
+
+ if (i + 2 < num_nodes) {
+ EMIT_ARG(jump_if_or_pop, false, l_fail);
+ }
+ }
+ if (multi) {
+ uint l_end = comp_next_label(comp);
+ EMIT_ARG(jump, l_end);
+ EMIT_ARG(label_assign, l_fail);
+ EMIT_ARG(adjust_stack_size, 1);
+ EMIT(rot_two);
+ EMIT(pop_top);
+ EMIT_ARG(label_assign, l_end);
+ }
+}
+
+STATIC void compile_star_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_syntax_error(comp, p, "*x must be assignment target");
+}
+
+STATIC void c_binary_op(compiler_t *comp, const byte *p, const byte *ptop, mp_binary_op_t binary_op) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ p = compile_node(comp, p);
+ EMIT_ARG(binary_op, binary_op);
+ }
+}
+
+STATIC void compile_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ c_binary_op(comp, p, ptop, MP_BINARY_OP_OR);
+}
+
+STATIC void compile_xor_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ c_binary_op(comp, p, ptop, MP_BINARY_OP_XOR);
+}
+
+STATIC void compile_and_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ c_binary_op(comp, p, ptop, MP_BINARY_OP_AND);
+}
+
+STATIC void compile_shift_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ p = compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_DBL_LESS) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_LSHIFT);
+ } else {
+ assert(tok == MP_TOKEN_OP_DBL_MORE); // should be
+ EMIT_ARG(binary_op, MP_BINARY_OP_RSHIFT);
+ }
+ }
+}
+
+STATIC void compile_arith_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ p = compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_ADD);
+ } else {
+ assert(tok == MP_TOKEN_OP_MINUS); // should be
+ EMIT_ARG(binary_op, MP_BINARY_OP_SUBTRACT);
+ }
+ }
+}
+
+STATIC void compile_term(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p);
+ while (p != ptop) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ p = compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_STAR) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_MULTIPLY);
+ } else if (tok == MP_TOKEN_OP_DBL_SLASH) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_FLOOR_DIVIDE);
+ } else if (tok == MP_TOKEN_OP_SLASH) {
+ EMIT_ARG(binary_op, MP_BINARY_OP_TRUE_DIVIDE);
+ } else {
+ assert(tok == MP_TOKEN_OP_PERCENT); // should be
+ EMIT_ARG(binary_op, MP_BINARY_OP_MODULO);
+ }
+ }
+}
+
+STATIC void compile_factor_2(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ compile_node(comp, p);
+ if (tok == MP_TOKEN_OP_PLUS) {
+ EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE);
+ } else if (tok == MP_TOKEN_OP_MINUS) {
+ EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE);
+ } else {
+ assert(tok == MP_TOKEN_OP_TILDE); // should be
+ EMIT_ARG(unary_op, MP_UNARY_OP_INVERT);
+ }
+}
+
+STATIC void compile_power(compiler_t *comp, const byte *p, const byte *ptop) {
+ // this is to handle special super() call
+ comp->func_arg_is_super = pt_is_id(p, MP_QSTR_super);
+
+ compile_generic_all_nodes(comp, p, ptop);
+}
+
+// if p_arglist==NULL then there are no arguments
+STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra) {
+ // function to call is on top of stack
+
+ // this is to handle special super() call
+ if (p_arglist == NULL && comp->func_arg_is_super && comp->scope_cur->kind == SCOPE_FUNCTION) {
+ compile_load_id(comp, MP_QSTR___class__);
+ // look for first argument to function (assumes it's "self")
+ for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
+ if (comp->scope_cur->id_info[i].flags & ID_FLAG_IS_PARAM) {
+ // first argument found; load it and call super
+ EMIT_LOAD_FAST(MP_QSTR_, comp->scope_cur->id_info[i].local_num);
+ EMIT_ARG(call_function, 2, 0, 0);
+ return;
+ }
+ }
+ compile_syntax_error(comp, NULL, "super() call cannot find self"); // really a TypeError
+ return;
+ }
+
+ // get the list of arguments
+ const byte *ptop;
+ if (p_arglist == NULL) {
+ ptop = NULL;
+ } else {
+ ptop = mp_parse_node_extract_list(&p_arglist, PN_arglist);
+ }
+
+ // compile the arguments
+ // Rather than calling compile_node on the list, we go through the list of args
+ // explicitly here so that we can count the number of arguments and give sensible
+ // error messages.
+ int n_positional = n_positional_extra;
+ uint n_keyword = 0;
+ uint star_flags = 0;
+ const byte *p_star_args = NULL, *p_dblstar_args = NULL;
+ for (const byte *p = p_arglist; p != ptop;) {
+ if (pt_is_rule(p, PN_arglist_star)) {
+ if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
+ compile_syntax_error(comp, p, "can't have multiple *x");
+ return;
+ }
+ star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
+ p_star_args = pt_rule_first(p);
+ p = pt_next(p);
+ } else if (pt_is_rule(p, PN_arglist_dbl_star)) {
+ if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
+ compile_syntax_error(comp, p, "can't have multiple **x");
+ return;
+ }
+ star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
+ p_dblstar_args = pt_rule_first(p);
+ p = pt_next(p);
+ } else if (pt_is_rule(p, PN_argument)) {
+ p = pt_rule_first(p); // skip rule header
+ const byte *p2 = pt_next(p); // get second node
+ if (pt_is_rule(p2, PN_comp_for)) {
+ // list comprehension argument
+ compile_comprehension(comp, p, SCOPE_GEN_EXPR);
+ n_positional++;
+ p = pt_next(pt_next(p));
+ } else {
+ // keyword argument
+ if (!pt_is_any_id(p)) {
+ compile_syntax_error(comp, p, "LHS of keyword arg must be an id");
+ return;
+ }
+ qstr kw;
+ p = pt_extract_id(p, &kw);
+ EMIT_ARG(load_const_str, kw);
+ p = compile_node(comp, p);
+ n_keyword += 1;
+ }
+ } else {
+ if (n_keyword > 0) {
+ compile_syntax_error(comp, p, "non-keyword arg after keyword arg");
+ return;
+ }
+ p = compile_node(comp, p);
+ n_positional++;
+ }
+ }
+
+ // compile the star/double-star arguments if we had them
+ // if we had one but not the other then we load "null" as a place holder
+ if (star_flags != 0) {
+ if (p_star_args == NULL) {
+ EMIT(load_null);
+ } else {
+ compile_node(comp, p_star_args);
+ }
+ if (p_dblstar_args == NULL) {
+ EMIT(load_null);
+ } else {
+ compile_node(comp, p_dblstar_args);
+ }
+ }
+
+ // emit the function/method call
+ if (is_method_call) {
+ EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
+ } else {
+ EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
+ }
+}
+
+STATIC void compile_power_trailers(compiler_t *comp, const byte *p, const byte *ptop) {
+ while (p != ptop) {
+ const byte *p_next = pt_next(p);
+ if (p_next != ptop && pt_is_rule(p, PN_trailer_period) && pt_is_rule(p_next, PN_trailer_paren)) {
+ // optimisation for method calls a.f(...), following PyPy
+ const byte *p_period = pt_rule_first(p);
+ const byte *p_paren;
+ if (pt_is_rule_empty(p_next)) {
+ p_paren = NULL;
+ } else {
+ p_paren = pt_rule_first(p_next);
+ }
+ qstr method_name;
+ pt_extract_id(p_period, &method_name);
+ EMIT_ARG(load_method, method_name);
+ compile_trailer_paren_helper(comp, p_paren, true, 0);
+ p = pt_next(p_next);
+ } else {
+ p = compile_node(comp, p);
+ }
+ comp->func_arg_is_super = false;
+ }
+}
+
+STATIC void compile_power_dbl_star(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ compile_node(comp, p);
+ EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
+}
+
+// p needs to point to 2 successive nodes, first is lhs of comprehension, second is PN_comp_for node
+STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind) {
+ const byte *p_comp_for = pt_next(p);
+ assert(pt_is_rule(p_comp_for, PN_comp_for));
+ p_comp_for = pt_rule_first(p_comp_for);
+
+ mp_int_t scope_idx;
+ p_comp_for = pt_get_small_int(p_comp_for, &scope_idx);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // create a new scope for this comprehension
+ scope_new_and_link(comp, scope_idx, kind, p, comp->scope_cur->emit_options);
+ }
+
+ // get the scope for this comprehension
+ scope_t *this_scope = comp->scopes[scope_idx];
+
+ // compile the comprehension
+ close_over_variables_etc(comp, this_scope, 0, 0);
+
+ compile_node(comp, pt_next(p_comp_for)); // source of the iterator
+ EMIT(get_iter);
+ EMIT_ARG(call_function, 1, 0, 0);
+}
+
+STATIC void compile_atom_paren(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // an empty tuple
+ c_tuple(comp, NULL, NULL, NULL);
+ } else if (pt_is_rule(p, PN_testlist_comp)) {
+ p = pt_rule_first(p);
+ const byte *p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_testlist_comp_3b) || pt_is_rule(p1, PN_testlist_comp_3c)) {
+ // tuple of one item with trailing comma (3b); or tuple of many items (3c)
+ c_tuple(comp, p, pt_rule_first(p1), ptop);
+ } else if (pt_is_rule(p1, PN_comp_for)) {
+ // generator expression
+ compile_comprehension(comp, p, SCOPE_GEN_EXPR);
+ } else {
+ // tuple with 2 items
+ c_tuple(comp, NULL, p, ptop);
+ }
+ } else {
+ // parenthesis around a single item, is just that item
+ compile_node(comp, p);
+ }
+}
+
+STATIC void compile_atom_bracket(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // empty list
+ EMIT_ARG(build_list, 0);
+ } else if (pt_is_rule(p, PN_testlist_comp)) {
+ p = pt_rule_first(p);
+ const byte *p3 = pt_next(p);
+ if (pt_is_rule(p3, PN_testlist_comp_3b) || pt_is_rule(p3, PN_testlist_comp_3c)) {
+ // list of one item with trailing comma (3b); or list of many items (3c)
+ p3 = pt_rule_first(p3);
+ compile_node(comp, p);
+ compile_generic_all_nodes(comp, p3, ptop);
+ EMIT_ARG(build_list, 1 + pt_num_nodes(p3, ptop));
+ } else if (pt_is_rule(p3, PN_comp_for)) {
+ // list comprehension
+ compile_comprehension(comp, p, SCOPE_LIST_COMP);
+ } else {
+ // list with 2 items
+ p = compile_node(comp, p);
+ compile_node(comp, p);
+ EMIT_ARG(build_list, 2);
+ }
+ } else {
+ // list with 1 item
+ compile_node(comp, p);
+ EMIT_ARG(build_list, 1);
+ }
+}
+
+STATIC void compile_atom_brace(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (pt_is_null_with_top(p, ptop)) {
+ // empty dict
+ EMIT_ARG(build_map, 0);
+ } else if (pt_is_rule(p, PN_dictorsetmaker_item)) {
+ // dict with one element
+ EMIT_ARG(build_map, 1);
+ compile_node(comp, p);
+ EMIT(store_map);
+ } else if (pt_is_rule(p, PN_dictorsetmaker)) {
+ p = pt_rule_first(p);
+ const byte *p1 = pt_next(p);
+ if (pt_is_rule(p1, PN_dictorsetmaker_list)) {
+ // dict/set with multiple elements
+ const byte *p1_top;
+ p1 = pt_rule_extract_top(p1, &p1_top);
+
+ // get tail elements (2nd, 3rd, ...)
+ if (p1 != p1_top) {
+ mp_parse_node_extract_list(&p1, PN_dictorsetmaker_list2);
+ }
+
+ // first element sets whether it's a dict or set
+ bool is_dict;
+ if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) {
+ // a dictionary
+ EMIT_ARG(build_map, 1 + pt_num_nodes(p1, p1_top));
+ compile_node(comp, p);
+ EMIT(store_map);
+ is_dict = true;
+ } else {
+ // a set
+ compile_node(comp, p); // 1st value of set
+ is_dict = false;
+ }
+
+ // process rest of elements
+ for (const byte *p_elem = p1; p_elem != p1_top;) {
+ bool is_key_value = pt_is_rule(p_elem, PN_dictorsetmaker_item);
+ p_elem = compile_node(comp, p_elem);
+ if (is_dict) {
+ if (!is_key_value) {
+ // TODO what is the correct p for error node?
+ compile_syntax_error(comp, p, "expecting key:value for dictionary");
+ return;
+ }
+ EMIT(store_map);
+ } else {
+ if (is_key_value) {
+ // TODO what is the correct p for error node?
+ compile_syntax_error(comp, p, "expecting just a value for set");
+ return;
+ }
+ }
+ }
+
+ #if MICROPY_PY_BUILTINS_SET
+ // if it's a set, build it
+ if (!is_dict) {
+ EMIT_ARG(build_set, 1 + pt_num_nodes(p1, p1_top));
+ }
+ #endif
+ } else {
+ assert(pt_is_rule(p1, PN_comp_for)); // should be
+ // dict/set comprehension
+ if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) {
+ // a dictionary comprehension
+ compile_comprehension(comp, p, SCOPE_DICT_COMP);
+ } else {
+ // a set comprehension
+ compile_comprehension(comp, p, SCOPE_SET_COMP);
+ }
+ }
+ } else {
+ // set with one element
+ #if MICROPY_PY_BUILTINS_SET
+ compile_node(comp, p);
+ EMIT_ARG(build_set, 1);
+ #else
+ assert(0);
+ #endif
+ }
+}
+
+STATIC void compile_trailer_paren(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (p >= ptop) {
+ p = NULL;
+ }
+ compile_trailer_paren_helper(comp, p, false, 0);
+}
+
+STATIC void compile_trailer_bracket(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ // object who's index we want is on top of stack
+ compile_node(comp, p); // the index
+ EMIT(load_subscr);
+}
+
+STATIC void compile_trailer_period(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ // object who's attribute we want is on top of stack
+ qstr attr;
+ p = pt_extract_id(p, &attr);
+ EMIT_ARG(load_attr, attr);
+}
+
+#if MICROPY_PY_BUILTINS_SLICE
+// p,ptop should be the args of subscript_3
+STATIC void compile_subscript_3_helper(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (p == ptop) {
+ // [?:]
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT_ARG(build_slice, 2);
+ } else if (pt_is_rule(p, PN_subscript_3c)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ if (pt_is_rule_empty(p)) {
+ // [?::]
+ EMIT_ARG(build_slice, 2);
+ } else {
+ // [?::x]
+ compile_node(comp, pt_rule_first(p));
+ EMIT_ARG(build_slice, 3);
+ }
+ } else if (pt_is_rule(p, PN_subscript_3d)) {
+ p = pt_rule_first(p);
+ p = compile_node(comp, p);
+ if (pt_is_rule(p, PN_sliceop)) {
+ // [?:x:]
+ EMIT_ARG(build_slice, 2);
+ } else {
+ // [?:x:x]
+ compile_node(comp, p);
+ EMIT_ARG(build_slice, 3);
+ }
+ } else {
+ // [?:x]
+ compile_node(comp, p);
+ EMIT_ARG(build_slice, 2);
+ }
+}
+
+STATIC void compile_subscript_2(compiler_t *comp, const byte *p, const byte *ptop) {
+ p = compile_node(comp, p); // start of slice
+ p = pt_rule_first(p); // skip header of subscript_3
+ compile_subscript_3_helper(comp, p, ptop);
+}
+
+STATIC void compile_subscript_3(compiler_t *comp, const byte *p, const byte *ptop) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ compile_subscript_3_helper(comp, p, ptop);
+}
+#endif // MICROPY_PY_BUILTINS_SLICE
+
+STATIC void compile_dictorsetmaker_item(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ // if this is called then we are compiling a dict key:value pair
+ compile_node(comp, pt_next(p)); // value
+ compile_node(comp, p); // key
+}
+
+STATIC void compile_classdef(compiler_t *comp, const byte *p, const byte *ptop) {
+ (void)ptop;
+ qstr cname = compile_classdef_helper(comp, p, comp->scope_cur->emit_options);
+ // store class object into class name
+ compile_store_id(comp, cname);
+}
+
+STATIC void compile_yield_expr(compiler_t *comp, const byte *p, const byte *ptop) {
+ if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
+ compile_syntax_error(comp, NULL, "'yield' outside function");
+ return;
+ }
+ if (pt_is_null_with_top(p, ptop)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(yield_value);
+ } else if (pt_is_rule(p, PN_yield_arg_from)) {
+ p = pt_rule_first(p);
+ compile_node(comp, p);
+ EMIT(get_iter);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(yield_from);
+ } else {
+ compile_node(comp, p);
+ EMIT(yield_value);
+ }
+}
+
+typedef void (*compile_function_t)(compiler_t*, const byte*, const byte*);
+STATIC compile_function_t compile_function[] = {
+#define nc NULL
+#define c(f) compile_##f
+#define DEF_RULE(rule, comp, kind, ...) comp,
+#include "py/grammar.h"
+#undef nc
+#undef c
+#undef DEF_RULE
+ NULL,
+};
+
+STATIC const byte *compile_node(compiler_t *comp, const byte *p) {
+ //printf("CN %p %02x %02x %02x\n", p, p[0], p[1], p[2]);
+ if (pt_is_null(p)) {
+ // pass
+ return p + 1;
+ } else if (pt_is_small_int(p)) {
+ mp_int_t arg;
+ p = pt_get_small_int(p, &arg);
+ EMIT_ARG(load_const_small_int, arg);
+ return p;
+ } else if (pt_is_any_tok(p)) {
+ byte tok;
+ p = pt_tok_extract(p, &tok);
+ if (tok == MP_TOKEN_NEWLINE) {
+ // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
+ // or when single_input lets through a NEWLINE (user enters a blank line)
+ // do nothing
+ } else {
+ EMIT_ARG(load_const_tok, tok);
+ }
+ return p;
+ } else if (*p == MP_PT_STRING) {
+ qstr qst = p[1] | (p[2] << 8);
+ EMIT_ARG(load_const_str, qst);
+ return pt_next(p);
+ } else if (*p == MP_PT_BYTES) {
+ // only create and load the actual bytes object on the last pass
+ if (comp->pass != MP_PASS_EMIT) {
+ EMIT_ARG(load_const_obj, mp_const_none);
+ } else {
+ qstr qst = p[1] | (p[2] << 8);
+ mp_uint_t len;
+ const byte *data = qstr_data(qst, &len);
+ EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
+ }
+ return pt_next(p);
+ } else if (pt_is_any_id(p)) {
+ qstr qst;
+ p = pt_extract_id(p, &qst);
+ compile_load_id(comp, qst);
+ return p;
+ } else if (*p == MP_PT_CONST_OBJECT) {
+ mp_uint_t idx;
+ p = pt_extract_const_obj(p, &idx);
+ EMIT_ARG(load_const_obj, (mp_obj_t)comp->co_data[idx]);
+ return p;
+ } else {
+ assert(*p >= MP_PT_RULE_BASE);
+ mp_uint_t rule_id, src_line;
+ const byte *ptop;
+ p = pt_rule_extract(p, &rule_id, &src_line, &ptop);
+ EMIT_ARG(set_source_line, src_line);
+ compile_function_t f = compile_function[rule_id];
+ if (f == NULL) {
+ #if MICROPY_DEBUG_PRINTERS
+ printf("node %u cannot be compiled\n", (uint)rule_id);
+ //mp_parse_node_print(pn, 0);
+ #endif
+ compile_syntax_error(comp, p, "internal compiler error");
+ assert(0);
+ return ptop;
+ } else {
+ f(comp, p, ptop);
+ if (comp->compile_error != MP_OBJ_NULL && comp->compile_error_line == 0) {
+ // add line info for the error in case it didn't have a line number
+ comp->compile_error_line = src_line;
+ }
+ return ptop;
+ }
+ }
+}
+
+STATIC void compile_scope_func_lambda_param(compiler_t *comp, const byte *p, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
+ (void)pn_dbl_star;
+ // TODO verify that *k and **k are last etc
+ qstr param_name = MP_QSTR_NULL;
+ uint param_flag = ID_FLAG_IS_PARAM;
+ if (pt_is_any_id(p)) {
+ pt_extract_id(p, &param_name);
+ if (comp->have_star) {
+ // comes after a star, so counts as a keyword-only parameter
+ comp->scope_cur->num_kwonly_args += 1;
+ } else {
+ // comes before a star, so counts as a positional parameter
+ comp->scope_cur->num_pos_args += 1;
+ }
+ } else {
+ if (pt_is_rule(p, pn_name)) {
+ pt_extract_id(pt_rule_first(p), &param_name);
+ if (comp->have_star) {
+ // comes after a star, so counts as a keyword-only parameter
+ comp->scope_cur->num_kwonly_args += 1;
+ } else {
+ // comes before a star, so counts as a positional parameter
+ comp->scope_cur->num_pos_args += 1;
+ }
+ } else if (pt_is_rule(p, pn_star)) {
+ comp->have_star = true;
+ param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
+ if (pt_is_rule_empty(p)) {
+ // bare star
+ // TODO see http://www.python.org/dev/peps/pep-3102/
+ //assert(comp->scope_cur->num_dict_params == 0);
+ } else if (pt_is_any_id(pt_rule_first(p))) {
+ // named star
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
+ pt_extract_id(pt_rule_first(p), &param_name);
+ } else {
+ assert(pt_is_rule(pt_rule_first(p), PN_tfpdef)); // should be
+ // named star with possible annotation
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
+ pt_extract_id(pt_rule_first(pt_rule_first(p)), &param_name);
+ }
+ } else {
+ assert(pt_is_rule(p, pn_dbl_star)); // should be
+ pt_extract_id(pt_rule_first(p), &param_name);
+ param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
+ comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
+ }
+ }
+
+ if (param_name != MP_QSTR_NULL) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
+ if (!added) {
+ compile_syntax_error(comp, p, "name reused for argument");
+ return;
+ }
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ id_info->flags = param_flag;
+ }
+}
+
+STATIC void compile_scope_func_param(compiler_t *comp, const byte *p) {
+ compile_scope_func_lambda_param(comp, p, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
+}
+
+STATIC void compile_scope_lambda_param(compiler_t *comp, const byte *p) {
+ compile_scope_func_lambda_param(comp, p, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
+}
+
+#if MICROPY_EMIT_NATIVE
+STATIC void compile_scope_func_annotations(compiler_t *comp, const byte *p) {
+ if (pt_is_rule(p, PN_typedargslist_name)) {
+ // named parameter with possible annotation
+ // fallthrough
+ } else if (pt_is_rule(p, PN_typedargslist_star)) {
+ const byte *p0 = pt_rule_first(p);
+ if (pt_is_rule(p0, PN_tfpdef)) {
+ // named star with possible annotation
+ p = p0;
+ // fallthrough
+ } else {
+ // no annotation
+ return;
+ }
+ } else if (pt_is_rule(p, PN_typedargslist_dbl_star)) {
+ // double star with possible annotation
+ // fallthrough
+ } else {
+ // no annotation
+ return;
+ }
+
+ // p should be a rule whose first node is an identifier and second may be the annotation
+
+ const byte *ptop;
+ p = pt_rule_extract_top(p, &ptop);
+
+ qstr param_name;
+ p = pt_extract_id(p, &param_name);
+
+ if (!pt_is_null_with_top(p, ptop)) {
+ id_info_t *id_info = scope_find(comp->scope_cur, param_name);
+ assert(id_info != NULL);
+
+ if (pt_is_any_id(p)) {
+ qstr arg_type;
+ pt_extract_id(p, &arg_type);
+ EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
+ } else {
+ compile_syntax_error(comp, p, "parameter annotation must be an identifier");
+ }
+ }
+}
+#endif // MICROPY_EMIT_NATIVE
+
+STATIC void compile_scope_comp_iter(compiler_t *comp, const byte *p_iter, const byte *p_inner_expr, int l_top, int for_depth) {
+ tail_recursion:
+ if (p_iter == NULL) {
+ // no more nested if/for; compile inner expression
+ compile_node(comp, p_inner_expr);
+ if (comp->scope_cur->kind == SCOPE_LIST_COMP) {
+ EMIT_ARG(list_append, for_depth + 2);
+ } else if (comp->scope_cur->kind == SCOPE_DICT_COMP) {
+ EMIT_ARG(map_add, for_depth + 2);
+ #if MICROPY_PY_BUILTINS_SET
+ } else if (comp->scope_cur->kind == SCOPE_SET_COMP) {
+ EMIT_ARG(set_add, for_depth + 2);
+ #endif
+ } else {
+ EMIT(yield_value);
+ EMIT(pop_top);
+ }
+ } else if (pt_is_rule(p_iter, PN_comp_if)) {
+ // if condition
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p_iter, &ptop);
+ p_iter = c_if_cond(comp, p0, false, l_top);
+ if (p_iter == ptop) {
+ p_iter = NULL;
+ }
+ goto tail_recursion;
+ } else {
+ assert(pt_is_rule(p_iter, PN_comp_for)); // should be
+ // for loop
+ const byte *ptop;
+ const byte *p0 = pt_rule_extract_top(p_iter, &ptop);
+ p0 = pt_next(p0); // skip scope index
+ const byte *p2 = compile_node(comp, pt_next(p0));
+ uint l_end2 = comp_next_label(comp);
+ uint l_top2 = comp_next_label(comp);
+ EMIT(get_iter);
+ EMIT_ARG(label_assign, l_top2);
+ EMIT_ARG(for_iter, l_end2);
+ c_assign(comp, p0, ASSIGN_STORE);
+ compile_scope_comp_iter(comp, p2 == ptop ? NULL : p2, p_inner_expr, l_top2, for_depth + 1);
+ EMIT_ARG(jump, l_top2);
+ EMIT_ARG(label_assign, l_end2);
+ EMIT(for_iter_end);
+ }
+}
+
+#if 0
+STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
+#if MICROPY_ENABLE_DOC_STRING
+ // see http://www.python.org/dev/peps/pep-0257/
+
+ // look for the first statement
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
+ // a statement; fall through
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
+ // file input; find the first non-newline node
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
+ for (int i = 0; i < num_nodes; i++) {
+ pn = pns->nodes[i];
+ if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
+ // not a newline, so this is the first statement; finish search
+ break;
+ }
+ }
+ // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
+ } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
+ // a list of statements; get the first one
+ pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
+ } else {
+ return;
+ }
+
+ // check the first statement for a doc string
+ if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
+ if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
+ && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
+ || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) {
+ // compile the doc string
+ compile_node(comp, pns->nodes[0]);
+ // store the doc string
+ compile_store_id(comp, MP_QSTR___doc__);
+ }
+ }
+#else
+ (void)comp;
+ (void)pn;
+#endif
+}
+#endif
+
+STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
+ comp->pass = pass;
+ comp->scope_cur = scope;
+ comp->next_label = 1;
+ EMIT_ARG(start_pass, pass, scope);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ // reset maximum stack sizes in scope
+ // they will be computed in this first pass
+ scope->stack_size = 0;
+ scope->exc_stack_size = 0;
+ }
+
+ // compile
+ if (pt_is_rule(scope->pn, PN_eval_input)) {
+ assert(scope->kind == SCOPE_MODULE);
+ compile_node(comp, pt_rule_first(scope->pn)); // compile the expression
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_MODULE) {
+ if (!comp->is_repl) {
+ //check_for_doc_string(comp, scope->pn);
+ }
+ compile_node(comp, scope->pn);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_FUNCTION) {
+ const byte *p = scope->pn;
+
+ p = pt_next(p); // skip func name
+
+ // work out number of parameters, keywords and default parameters, and add them to the id_info array
+ // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
+ if (comp->pass == MP_PASS_SCOPE) {
+ comp->have_star = false;
+ apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_param);
+ }
+
+ #if MICROPY_EMIT_NATIVE
+ else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
+ // compile annotations; only needed on latter compiler passes
+ // only needed for viper emitter
+
+ // argument annotations
+ apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_annotations);
+
+ const byte *p_ret = pt_next(p); // skip arg list
+
+ // next node is return/whole function annotation
+ if (pt_is_any_id(p_ret)) {
+ qstr ret_type;
+ pt_extract_id(p_ret, &ret_type);
+ EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
+ } else if (!pt_is_null(p_ret)) {
+ compile_syntax_error(comp, p_ret, "return annotation must be an identifier");
+ }
+ }
+ #endif // MICROPY_EMIT_NATIVE
+
+ p = pt_next(p); // skip arg list
+ p = pt_next(p); // skip return annotation
+
+ compile_node(comp, p); // function body
+
+ // emit return if it wasn't the last opcode
+ if (!EMIT(last_emit_was_return_value)) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ EMIT(return_value);
+ }
+ } else if (scope->kind == SCOPE_LAMBDA) {
+ const byte *p = scope->pn;
+
+ // work out number of parameters, keywords and default parameters, and add them to the id_info array
+ // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
+ if (comp->pass == MP_PASS_SCOPE) {
+ comp->have_star = false;
+ apply_to_single_or_list(comp, p, PN_varargslist, compile_scope_lambda_param);
+ }
+
+ p = pt_next(p); // skip arg list
+
+ compile_node(comp, p); // lambda body
+
+ // if the lambda is a generator, then we return None, not the result of the expression of the lambda
+ if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
+ EMIT(pop_top);
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+ EMIT(return_value);
+ } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
+ const byte *p = scope->pn;
+ const byte *p_comp_for = pt_next(p);
+ const byte *p_comp_for_top;
+ p_comp_for = pt_rule_extract_top(p_comp_for, &p_comp_for_top);
+ p_comp_for = pt_next(p_comp_for); // skip scope index
+
+ // We need a unique name for the comprehension argument (the iterator).
+ // CPython uses .0, but we should be able to use anything that won't
+ // clash with a user defined variable. Best to use an existing qstr,
+ // so we use the blank qstr.
+ qstr qstr_arg = MP_QSTR_;
+ if (comp->pass == MP_PASS_SCOPE) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
+ assert(added);
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ scope->num_pos_args = 1;
+ }
+
+ if (scope->kind == SCOPE_LIST_COMP) {
+ EMIT_ARG(build_list, 0);
+ } else if (scope->kind == SCOPE_DICT_COMP) {
+ EMIT_ARG(build_map, 0);
+ #if MICROPY_PY_BUILTINS_SET
+ } else if (scope->kind == SCOPE_SET_COMP) {
+ EMIT_ARG(build_set, 0);
+ #endif
+ }
+
+ uint l_end = comp_next_label(comp);
+ uint l_top = comp_next_label(comp);
+ compile_load_id(comp, qstr_arg);
+ EMIT_ARG(label_assign, l_top);
+ EMIT_ARG(for_iter, l_end);
+ c_assign(comp, p_comp_for, ASSIGN_STORE);
+ const byte *p_comp_for_p2 = pt_next(pt_next(p_comp_for));
+ if (p_comp_for_p2 == p_comp_for_top) {
+ p_comp_for_p2 = NULL;
+ }
+ compile_scope_comp_iter(comp, p_comp_for_p2, p, l_top, 0);
+ EMIT_ARG(jump, l_top);
+ EMIT_ARG(label_assign, l_end);
+ EMIT(for_iter_end);
+
+ if (scope->kind == SCOPE_GEN_EXPR) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ }
+ EMIT(return_value);
+ } else {
+ assert(scope->kind == SCOPE_CLASS);
+
+ if (comp->pass == MP_PASS_SCOPE) {
+ bool added;
+ id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
+ assert(added);
+ id_info->kind = ID_INFO_KIND_LOCAL;
+ }
+
+ // just to check, should remove this code
+ qstr class_name;
+ pt_extract_id(scope->pn, &class_name);
+ assert(class_name == scope->simple_name);
+
+ compile_load_id(comp, MP_QSTR___name__);
+ compile_store_id(comp, MP_QSTR___module__);
+ EMIT_ARG(load_const_str, scope->simple_name);
+ compile_store_id(comp, MP_QSTR___qualname__);
+
+ const byte *p = pt_next(pt_next(scope->pn)); // skip name, bases
+ //check_for_doc_string(comp, p);
+ compile_node(comp, p); // class body
+
+ id_info_t *id = scope_find(scope, MP_QSTR___class__);
+ assert(id != NULL);
+ if (id->kind == ID_INFO_KIND_LOCAL) {
+ EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
+ } else {
+ EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
+ }
+ EMIT(return_value);
+ }
+
+ EMIT(end_pass);
+
+ // make sure we match all the exception levels
+ assert(comp->cur_except_level == 0);
+}
+
+#if MICROPY_EMIT_INLINE_THUMB
+// requires 3 passes: SCOPE, CODE_SIZE, EMIT
+STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
+ comp->pass = pass;
+ comp->scope_cur = scope;
+ comp->next_label = 1;
+
+ if (scope->kind != SCOPE_FUNCTION) {
+ compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function");
+ return;
+ }
+
+ if (comp->pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(start_pass, comp->pass, comp->scope_cur, &comp->compile_error);
+ }
+
+ // get the function definition parse node
+ assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
+ mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
+ assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
+
+ //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
+
+ // parameters are in pns->nodes[1]
+ if (comp->pass == MP_PASS_CODE_SIZE) {
+ mp_parse_node_t *pn_params;
+ int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
+ scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
+ if (comp->compile_error != MP_OBJ_NULL) {
+ goto inline_asm_error;
+ }
+ }
+
+ assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // type
+
+ mp_parse_node_t pn_body = pns->nodes[3]; // body
+ mp_parse_node_t *nodes;
+ int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);
+
+ for (int i = 0; i < num; i++) {
+ assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
+ mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
+ // no instructions
+ continue;
+ } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
+ // not an instruction; error
+ not_an_instruction:
+ compile_syntax_error(comp, nodes[i], "expecting an assembler instruction");
+ return;
+ }
+
+ // check structure of parse node
+ assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
+ if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
+ goto not_an_instruction;
+ }
+ pns2 = (mp_parse_node_struct_t*)pns2->nodes[0];
+ if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_power) {
+ goto not_an_instruction;
+ }
+ if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
+ goto not_an_instruction;
+ }
+ if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
+ goto not_an_instruction;
+ }
+ assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[2]));
+
+ // parse node looks like an instruction
+ // get instruction name and args
+ qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
+ pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren
+ mp_parse_node_t *pn_arg;
+ int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);
+
+ // emit instructions
+ if (op == MP_QSTR_label) {
+ if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], "'label' requires 1 argument");
+ return;
+ }
+ uint lab = comp_next_label(comp);
+ if (pass > MP_PASS_SCOPE) {
+ if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], "label redefined");
+ return;
+ }
+ }
+ } else if (op == MP_QSTR_align) {
+ if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], "'align' requires 1 argument");
+ return;
+ }
+ if (pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(align, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
+ }
+ } else if (op == MP_QSTR_data) {
+ if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
+ compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments");
+ return;
+ }
+ if (pass > MP_PASS_SCOPE) {
+ mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
+ for (uint j = 1; j < n_args; j++) {
+ if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
+ compile_syntax_error(comp, nodes[i], "'data' requires integer arguments");
+ return;
+ }
+ EMIT_INLINE_ASM_ARG(data, bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
+ }
+ }
+ } else {
+ if (pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ pns = pns2; // this is the parse node that had the error
+ goto inline_asm_error;
+ }
+ }
+
+ if (comp->pass > MP_PASS_SCOPE) {
+ EMIT_INLINE_ASM(end_pass);
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // inline assembler had an error; set line for its exception
+ inline_asm_error:
+ comp->compile_error_line = pns->source_line;
+ }
+}
+#endif
+
+STATIC void scope_compute_things(scope_t *scope) {
+ // in Micro Python we put the *x parameter after all other parameters (except **y)
+ if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
+ id_info_t *id_param = NULL;
+ for (int i = scope->id_info_len - 1; i >= 0; i--) {
+ id_info_t *id = &scope->id_info[i];
+ if (id->flags & ID_FLAG_IS_STAR_PARAM) {
+ if (id_param != NULL) {
+ // swap star param with last param
+ id_info_t temp = *id_param; *id_param = *id; *id = temp;
+ }
+ break;
+ } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
+ id_param = id;
+ }
+ }
+ }
+
+ // in functions, turn implicit globals into explicit globals
+ // compute the index of each local
+ scope->num_locals = 0;
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
+ // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
+ continue;
+ }
+ if (scope->kind >= SCOPE_FUNCTION && scope->kind <= SCOPE_GEN_EXPR && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
+ id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
+ }
+ // params always count for 1 local, even if they are a cell
+ if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num = scope->num_locals++;
+ }
+ }
+
+ // compute the index of cell vars
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ // in Micro Python the cells come right after the fast locals
+ // parameters are not counted here, since they remain at the start
+ // of the locals, even if they are cell vars
+ if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num = scope->num_locals;
+ scope->num_locals += 1;
+ }
+ }
+
+ // compute the index of free vars
+ // make sure they are in the order of the parent scope
+ if (scope->parent != NULL) {
+ int num_free = 0;
+ for (int i = 0; i < scope->parent->id_info_len; i++) {
+ id_info_t *id = &scope->parent->id_info[i];
+ if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
+ for (int j = 0; j < scope->id_info_len; j++) {
+ id_info_t *id2 = &scope->id_info[j];
+ if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
+ assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
+ // in Micro Python the frees come first, before the params
+ id2->local_num = num_free;
+ num_free += 1;
+ }
+ }
+ }
+ }
+ // in Micro Python shift all other locals after the free locals
+ if (num_free > 0) {
+ for (int i = 0; i < scope->id_info_len; i++) {
+ id_info_t *id = &scope->id_info[i];
+ if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
+ id->local_num += num_free;
+ }
+ }
+ scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
+ scope->num_locals += num_free;
+ }
+ }
+}
+
+mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
+ // put compiler state on the stack, it's relatively small
+ compiler_t comp_state = {0};
+ compiler_t *comp = &comp_state;
+
+ comp->source_file = source_file;
+ comp->is_repl = is_repl;
+ comp->co_data = parse_tree->co_data;
+
+ // create the array of scopes
+ comp->num_scopes = pt_small_int_value(pt_next(parse_tree->root));
+ comp->scopes = m_new0(scope_t*, comp->num_scopes);
+
+ // create the module scope
+ scope_new_and_link(comp, 0, SCOPE_MODULE, parse_tree->root, emit_opt);
+
+ // create standard emitter; it's used at least for MP_PASS_SCOPE
+ emit_t *emit_bc = emit_bc_new();
+
+ // compile pass 1
+ comp->emit = emit_bc;
+ #if MICROPY_EMIT_NATIVE
+ comp->emit_method_table = &emit_bc_method_table;
+ #endif
+ uint max_num_labels = 0;
+
+ // grrr: scope for nested comp_for's are not used, unless they are parenthesised
+ // and become individual generators; in this case they are parsed in the wrong
+ // direction for allocation of scope id
+ bool keep_going = true;
+ while (keep_going) {
+ keep_going = false;
+
+ for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
+ scope_t *s = comp->scopes[i];
+ if (s == NULL) { continue; } // no scope (yet?)
+ if (s->raw_code != NULL) { continue; } // scope already did pass 1
+ keep_going = true;
+ s->raw_code = mp_emit_glue_new_raw_code();
+ if (false) {
+#if MICROPY_EMIT_INLINE_THUMB
+ } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) {
+ compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
+#endif
+ } else {
+ compile_scope(comp, s, MP_PASS_SCOPE);
+ }
+
+ // update maximim number of labels needed
+ if (comp->next_label > max_num_labels) {
+ max_num_labels = comp->next_label;
+ }
+ }
+ }
+
+ // compute some things related to scope and identifiers
+ for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
+ scope_t *s = comp->scopes[i];
+ if (s == NULL) { continue; } // TODO scope for nested comp_for's are not used
+ scope_compute_things(s);
+ }
+
+ // set max number of labels now that it's calculated
+ emit_bc_set_max_num_labels(emit_bc, max_num_labels);
+
+ // compile pass 2 and 3
+#if MICROPY_EMIT_NATIVE
+ emit_t *emit_native = NULL;
+#endif
+#if MICROPY_EMIT_INLINE_THUMB
+ emit_inline_asm_t *emit_inline_thumb = NULL;
+#endif
+ for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) {
+ scope_t *s = comp->scopes[i];
+ if (s == NULL) { continue; }
+ if (false) {
+ // dummy
+
+#if MICROPY_EMIT_INLINE_THUMB
+ } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) {
+ // inline assembly for thumb
+ if (emit_inline_thumb == NULL) {
+ emit_inline_thumb = emit_inline_thumb_new(max_num_labels);
+ }
+ comp->emit = NULL;
+ comp->emit_inline_asm = emit_inline_thumb;
+ comp->emit_inline_asm_method_table = &emit_inline_thumb_method_table;
+ compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
+ }
+#endif
+
+ } else {
+
+ // choose the emit type
+
+ switch (s->emit_options) {
+
+#if MICROPY_EMIT_NATIVE
+ case MP_EMIT_OPT_NATIVE_PYTHON:
+ case MP_EMIT_OPT_VIPER:
+#if MICROPY_EMIT_X64
+ if (emit_native == NULL) {
+ emit_native = emit_native_x64_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_x64_method_table;
+#elif MICROPY_EMIT_X86
+ if (emit_native == NULL) {
+ emit_native = emit_native_x86_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_x86_method_table;
+#elif MICROPY_EMIT_THUMB
+ if (emit_native == NULL) {
+ emit_native = emit_native_thumb_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_thumb_method_table;
+#elif MICROPY_EMIT_ARM
+ if (emit_native == NULL) {
+ emit_native = emit_native_arm_new(&comp->compile_error, max_num_labels);
+ }
+ comp->emit_method_table = &emit_native_arm_method_table;
+#endif
+ comp->emit = emit_native;
+ EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
+ break;
+#endif // MICROPY_EMIT_NATIVE
+
+ default:
+ comp->emit = emit_bc;
+ #if MICROPY_EMIT_NATIVE
+ comp->emit_method_table = &emit_bc_method_table;
+ #endif
+ break;
+ }
+
+ // need a pass to compute stack size
+ compile_scope(comp, s, MP_PASS_STACK_SIZE);
+
+ // second last pass: compute code size
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope(comp, s, MP_PASS_CODE_SIZE);
+ }
+
+ // final pass: emit code
+ if (comp->compile_error == MP_OBJ_NULL) {
+ compile_scope(comp, s, MP_PASS_EMIT);
+ }
+ }
+ }
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ // if there is no line number for the error then use the line
+ // number for the start of this scope
+ compile_error_set_line(comp, comp->scope_cur->pn);
+ // add a traceback to the exception using relevant source info
+ mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
+ comp->compile_error_line, comp->scope_cur->simple_name);
+ }
+
+ // free the emitters
+
+ emit_bc_free(emit_bc);
+#if MICROPY_EMIT_NATIVE
+ if (emit_native != NULL) {
+#if MICROPY_EMIT_X64
+ emit_native_x64_free(emit_native);
+#elif MICROPY_EMIT_X86
+ emit_native_x86_free(emit_native);
+#elif MICROPY_EMIT_THUMB
+ emit_native_thumb_free(emit_native);
+#elif MICROPY_EMIT_ARM
+ emit_native_arm_free(emit_native);
+#endif
+ }
+#endif
+#if MICROPY_EMIT_INLINE_THUMB
+ if (emit_inline_thumb != NULL) {
+ emit_inline_thumb_free(emit_inline_thumb);
+ }
+#endif
+
+ // free the parse tree
+ mp_parse_tree_clear(parse_tree);
+
+ mp_raw_code_t *outer_raw_code = comp->scopes[0]->raw_code;
+
+ // free the scopes
+ for (uint i = 0; i < comp->num_scopes; ++i) {
+ if (comp->scopes[i] == NULL) { continue; } // TODO scope for nested comp_for's are not used
+ scope_free(comp->scopes[i]);
+ }
+ m_del(scope_t*, comp->scopes, comp->num_scopes);
+
+ if (comp->compile_error != MP_OBJ_NULL) {
+ nlr_raise(comp->compile_error);
+ } else {
+ // return function that executes the outer module
+ return mp_make_function_from_raw_code(outer_raw_code, MP_OBJ_NULL, MP_OBJ_NULL);
+ }
+}