diff options
author | Damien George <damien.p.george@gmail.com> | 2015-10-13 16:39:46 +0100 |
---|---|---|
committer | Damien George <damien.p.george@gmail.com> | 2016-04-18 15:09:34 +0100 |
commit | 61398ab45a2ef27ce44769b4259ee97b583f2978 (patch) | |
tree | f69060919c31a0e720f383470eb62d59fe8b9fb6 /py/compile2.c | |
parent | 5bf649f37065ac0855f55f99496adb4cce63557d (diff) | |
download | micropython-61398ab45a2ef27ce44769b4259ee97b583f2978.tar.gz micropython-61398ab45a2ef27ce44769b4259ee97b583f2978.zip |
py: Implement parse bytecode.
Diffstat (limited to 'py/compile2.c')
-rw-r--r-- | py/compile2.c | 3343 |
1 files changed, 3343 insertions, 0 deletions
diff --git a/py/compile2.c b/py/compile2.c new file mode 100644 index 0000000000..9db0c2f04d --- /dev/null +++ b/py/compile2.c @@ -0,0 +1,3343 @@ +/* + * This file is part of the Micro Python project, http://micropython.org/ + * + * The MIT License (MIT) + * + * Copyright (c) 2013-2015 Damien P. George + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include <stdbool.h> +#include <stdint.h> +#include <stdio.h> +#include <string.h> +#include <assert.h> + +#include "py/scope.h" +#include "py/emit.h" +#include "py/compile.h" +#include "py/smallint.h" +#include "py/runtime.h" +#include "py/builtin.h" + +// TODO need to mangle __attr names + +typedef enum { +#define DEF_RULE(rule, comp, kind, ...) PN_##rule, +#include "py/grammar.h" +#undef DEF_RULE + PN_maximum_number_of, +} pn_kind_t; + +#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE + +#if NEED_METHOD_TABLE + +// we need a method table to do the lookup for the emitter functions +#define EMIT(fun) (comp->emit_method_table->fun(comp->emit)) +#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__)) +#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num)) +#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst)) + +#else + +// if we only have the bytecode emitter enabled then we can do a direct call to the functions +#define EMIT(fun) (mp_emit_bc_##fun(comp->emit)) +#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__)) +#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num)) +#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst)) + +#endif + +#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm)) +#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__)) + +// elements in this struct are ordered to make it compact +typedef struct _compiler_t { + qstr source_file; + + uint8_t is_repl; + uint8_t pass; // holds enum type pass_kind_t + uint8_t func_arg_is_super; // used to compile special case of super() function call + uint8_t have_star; + + // try to keep compiler clean from nlr + mp_obj_t compile_error; // set to an exception object if there's an error + mp_uint_t compile_error_line; // set to best guess of line of error + + uint next_label; + + uint16_t num_dict_params; + uint16_t num_default_params; + + uint16_t break_label; // highest bit set indicates we are breaking out of a for loop + uint16_t continue_label; + uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT + uint16_t break_continue_except_level; + + mp_uint_t *co_data; + + mp_uint_t num_scopes; + scope_t **scopes; + scope_t *scope_cur; + + emit_t *emit; // current emitter + #if NEED_METHOD_TABLE + const emit_method_table_t *emit_method_table; // current emit method table + #endif + + #if MICROPY_EMIT_INLINE_THUMB + emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm + const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm + #endif +} compiler_t; + +STATIC void compile_error_set_line(compiler_t *comp, const byte *p) { + // if the line of the error is unknown then try to update it from the parse data + if (comp->compile_error_line == 0 && p != NULL && pt_is_any_rule(p)) { + mp_uint_t rule_id, src_line; + const byte *ptop; + pt_rule_extract(p, &rule_id, &src_line, &ptop); + comp->compile_error_line = src_line; + } +} + +STATIC void compile_syntax_error(compiler_t *comp, const byte *p, const char *msg) { + // only register the error if there has been no other error + if (comp->compile_error == MP_OBJ_NULL) { + comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); + compile_error_set_line(comp, p); + } +} + +STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra); +STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind); +STATIC const byte *compile_node(compiler_t *comp, const byte *p); + +STATIC uint comp_next_label(compiler_t *comp) { + return comp->next_label++; +} + +STATIC void compile_increase_except_level(compiler_t *comp) { + comp->cur_except_level += 1; + if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { + comp->scope_cur->exc_stack_size = comp->cur_except_level; + } +} + +STATIC void compile_decrease_except_level(compiler_t *comp) { + assert(comp->cur_except_level > 0); + comp->cur_except_level -= 1; +} + +STATIC void scope_new_and_link(compiler_t *comp, mp_uint_t scope_idx, scope_kind_t kind, const byte *p, uint emit_options) { + scope_t *scope = scope_new(kind, p, comp->source_file, emit_options); + scope->parent = comp->scope_cur; + comp->scopes[scope_idx] = scope; +} + +typedef void (*apply_list_fun_t)(compiler_t *comp, const byte *p); + +STATIC void apply_to_single_or_list(compiler_t *comp, const byte *p, pn_kind_t pn_list_kind, apply_list_fun_t f) { + if (pt_is_rule(p, pn_list_kind)) { + const byte *ptop; + p = pt_rule_extract_top(p, &ptop); + while (p != ptop) { + f(comp, p); + p = pt_next(p); + } + } else if (!pt_is_null(p)) { + f(comp, p); + } +} + +STATIC void compile_generic_all_nodes(compiler_t *comp, const byte *p, const byte *ptop) { + while (p != ptop) { + //printf("NODE: %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3]); + p = compile_node(comp, p); + } +} + +STATIC void compile_load_id(compiler_t *comp, qstr qst) { + if (comp->pass == MP_PASS_SCOPE) { + mp_emit_common_get_id_for_load(comp->scope_cur, qst); + } else { + #if NEED_METHOD_TABLE + mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst); + #else + mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst); + #endif + } +} + +STATIC void compile_store_id(compiler_t *comp, qstr qst) { + if (comp->pass == MP_PASS_SCOPE) { + mp_emit_common_get_id_for_modification(comp->scope_cur, qst); + } else { + #if NEED_METHOD_TABLE + mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst); + #else + mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst); + #endif + } +} + +STATIC void compile_delete_id(compiler_t *comp, qstr qst) { + if (comp->pass == MP_PASS_SCOPE) { + mp_emit_common_get_id_for_modification(comp->scope_cur, qst); + } else { + #if NEED_METHOD_TABLE + mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst); + #else + mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst); + #endif + } +} + +STATIC void c_tuple(compiler_t *comp, const byte *p, const byte *p_list, const byte *p_list_top) { + int total = 0; + if (p != NULL) { + compile_node(comp, p); + total += 1; + } + while (p_list != p_list_top) { + p_list = compile_node(comp, p_list); + total += 1; + } + EMIT_ARG(build_tuple, total); +} + +STATIC void compile_generic_tuple(compiler_t *comp, const byte *p, const byte *ptop) { + // a simple tuple expression + c_tuple(comp, NULL, p, ptop); +} + +STATIC bool node_is_const_false(const byte *p) { + return pt_is_tok(p, MP_TOKEN_KW_FALSE) + || (pt_is_small_int(p) && pt_small_int_value(p) == 0); +} + +STATIC bool node_is_const_true(const byte *p) { + return pt_is_tok(p, MP_TOKEN_KW_TRUE) + || (pt_is_small_int(p) && pt_small_int_value(p) != 0); +} + +STATIC const byte *c_if_cond(compiler_t *comp, const byte *p, bool jump_if, int label) { + if (node_is_const_false(p)) { + if (jump_if == false) { + EMIT_ARG(jump, label); + } + return pt_next(p); + } else if (node_is_const_true(p)) { + if (jump_if == true) { + EMIT_ARG(jump, label); + } + return pt_next(p); + } else if (pt_is_any_rule(p)) { + const byte *ptop; + const byte *p2 = pt_rule_extract_top(p, &ptop); + if (pt_is_rule(p, PN_or_test)) { + if (jump_if == false) { + and_or_logic1:; + uint label2 = comp_next_label(comp); + while (pt_next(p2) != ptop) { + p2 = c_if_cond(comp, p2, !jump_if, label2); + } + p2 = c_if_cond(comp, p2, jump_if, label); + EMIT_ARG(label_assign, label2); + } else { + and_or_logic2: + while (p2 != ptop) { + p2 = c_if_cond(comp, p2, jump_if, label); + } + } + return p2; + } else if (pt_is_rule(p, PN_and_test)) { + if (jump_if == false) { + goto and_or_logic2; + } else { + goto and_or_logic1; + } + } else if (pt_is_rule(p, PN_not_test_2)) { + return c_if_cond(comp, p2, !jump_if, label); + } else if (pt_is_rule(p, PN_atom_paren)) { + // cond is something in parenthesis + if (pt_is_rule_empty(p)) { + // empty tuple, acts as false for the condition + if (jump_if == false) { + EMIT_ARG(jump, label); + } + } else if (pt_is_rule(pt_rule_first(p), PN_testlist_comp)) { + // non-empty tuple, acts as true for the condition + if (jump_if == true) { + EMIT_ARG(jump, label); + } + } else { + // parenthesis around 1 item, is just that item + c_if_cond(comp, pt_rule_first(p), jump_if, label); + } + return pt_next(p); + } + } + + // nothing special, fall back to default compiling for node and jump + p = compile_node(comp, p); + EMIT_ARG(pop_jump_if, jump_if, label); + return p; +} + +typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t; +STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t kind); + +STATIC void c_assign_power(compiler_t *comp, const byte *p_orig, assign_kind_t assign_kind) { + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p_orig, &ptop); + + if (assign_kind != ASSIGN_AUG_STORE) { + compile_node(comp, p0); + } + + const byte *p1 = pt_next(p0); + + if (pt_is_null_with_top(p1, ptop)) { + cannot_assign: + compile_syntax_error(comp, p_orig, "can't assign to expression"); + return; + } + + if (pt_is_rule(p1, PN_power_trailers)) { + const byte *p1top; + p1 = pt_rule_extract_top(p1, &p1top); + for (;;) { + const byte *p1next = pt_next(p1); + if (p1next >= p1top) { + break; + } + if (assign_kind != ASSIGN_AUG_STORE) { + compile_node(comp, p1); + } + p1 = p1next; + } + // p1 now points to final trailer for store + } + + if (pt_is_rule(p1, PN_trailer_bracket)) { + if (assign_kind == ASSIGN_AUG_STORE) { + EMIT(rot_three); + EMIT(store_subscr); + } else { + compile_node(comp, pt_rule_first(p1)); + if (assign_kind == ASSIGN_AUG_LOAD) { + EMIT(dup_top_two); + EMIT(load_subscr); + } else { + EMIT(store_subscr); + } + } + } else if (pt_is_rule(p1, PN_trailer_period)) { + qstr attr; + pt_extract_id(pt_rule_first(p1), &attr); + if (assign_kind == ASSIGN_AUG_LOAD) { + EMIT(dup_top); + EMIT_ARG(load_attr, attr); + } else { + if (assign_kind == ASSIGN_AUG_STORE) { + EMIT(rot_two); + } + EMIT_ARG(store_attr, attr); + } + } else { + goto cannot_assign; + } + + if (!pt_is_null_with_top(pt_next(p1), ptop)) { + goto cannot_assign; + } +} + +// we need to allow for a caller passing in 1 initial node followed by an array of nodes +STATIC void c_assign_tuple(compiler_t *comp, const byte *p_head, const byte *p_tail, const byte *p_tail_top) { + uint num_head = (p_head == NULL) ? 0 : 1; + uint num_tail = pt_num_nodes(p_tail, p_tail_top); + + // look for star expression + const byte *p_star = NULL; + if (num_head != 0 && pt_is_rule(p_head, PN_star_expr)) { + EMIT_ARG(unpack_ex, 0, num_tail); + p_star = p_head; + } + uint i = 0; + for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p), ++i) { + if (pt_is_rule(p, PN_star_expr)) { + if (p_star == NULL) { + EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1); + p_star = p; + } else { + compile_syntax_error(comp, p, "multiple *x in assignment"); + return; + } + } + } + if (p_star == NULL) { + EMIT_ARG(unpack_sequence, num_head + num_tail); + } + if (num_head != 0) { + if (p_head == p_star) { + c_assign(comp, pt_rule_first(p_head), ASSIGN_STORE); + } else { + c_assign(comp, p_head, ASSIGN_STORE); + } + } + for (const byte *p = p_tail; p != p_tail_top; p = pt_next(p)) { + if (p == p_star) { + c_assign(comp, pt_rule_first(p), ASSIGN_STORE); + } else { + c_assign(comp, p, ASSIGN_STORE); + } + } +} + +// assigns top of stack to pn +STATIC void c_assign(compiler_t *comp, const byte *p, assign_kind_t assign_kind) { + tail_recursion: + assert(!pt_is_null(p)); + if (pt_is_any_id(p)) { + qstr arg; + p = pt_extract_id(p, &arg); + switch (assign_kind) { + case ASSIGN_STORE: + case ASSIGN_AUG_STORE: + compile_store_id(comp, arg); + break; + case ASSIGN_AUG_LOAD: + default: + compile_load_id(comp, arg); + break; + } + } else if (!pt_is_any_rule(p)) { + compile_syntax_error(comp, p, "can't assign to literal"); + } else { + switch (pt_rule_extract_rule_id(p)) { + case PN_power: + // lhs is an index or attribute + c_assign_power(comp, p, assign_kind); + break; + + case PN_testlist_star_expr: + case PN_exprlist: { + // lhs is a tuple + if (assign_kind != ASSIGN_STORE) { + goto bad_aug; + } + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p, &ptop); + c_assign_tuple(comp, NULL, p0, ptop); + break; + } + + case PN_atom_paren: { + // lhs is something in parenthesis + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p, &ptop); + if (pt_is_null_with_top(p0, ptop)) { + // empty tuple + goto cannot_assign; + } else if (pt_is_rule(p0, PN_testlist_comp)) { + if (assign_kind != ASSIGN_STORE) { + goto bad_aug; + } + p = p0; + goto testlist_comp; + } else { + // parenthesis around 1 item, is just that item + p = p0; + goto tail_recursion; + } + break; + } + + case PN_atom_bracket: { + // lhs is something in brackets + if (assign_kind != ASSIGN_STORE) { + goto bad_aug; + } + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p, &ptop); // skip rule header + if (pt_is_null_with_top(p0, ptop)) { + // empty list, assignment allowed + c_assign_tuple(comp, NULL, NULL, NULL); + } else if (pt_is_rule(p0, PN_testlist_comp)) { + p = p0; + goto testlist_comp; + } else { + // brackets around 1 item + c_assign_tuple(comp, p0, NULL, NULL); + } + break; + } + + default: + goto cannot_assign; + } + return; + + testlist_comp:; + // lhs is a sequence + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p, &ptop); + const byte *p1 = pt_next(p0); + if (pt_is_rule(p1, PN_testlist_comp_3b)) { + // sequence of one item, with trailing comma + assert(pt_is_rule_empty(p1)); + c_assign_tuple(comp, p0, NULL, NULL); + } else if (pt_is_rule(p1, PN_testlist_comp_3c)) { + // sequence of many items + p1 = pt_rule_extract_top(p1, &ptop); + c_assign_tuple(comp, p0, p1, ptop); + } else if (pt_is_rule(p1, PN_comp_for)) { + // TODO can we ever get here? can it be compiled? + goto cannot_assign; + } else { + // sequence with 2 items + c_assign_tuple(comp, NULL, p0, pt_next(p1)); + } + } + return; + + cannot_assign: + compile_syntax_error(comp, p, "can't assign to expression"); + return; + + bad_aug: + compile_syntax_error(comp, p, "illegal expression for augmented assignment"); +} + +// stuff for lambda and comprehensions and generators: +// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults +// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults +// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple) +STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) { + assert(n_pos_defaults >= 0); + assert(n_kw_defaults >= 0); + + // set flags + if (n_kw_defaults > 0) { + this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS; + } + this_scope->num_def_pos_args = n_pos_defaults; + + // make closed over variables, if any + // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) + int nfree = 0; + if (comp->scope_cur->kind != SCOPE_MODULE) { + for (int i = 0; i < comp->scope_cur->id_info_len; i++) { + id_info_t *id = &comp->scope_cur->id_info[i]; + if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { + for (int j = 0; j < this_scope->id_info_len; j++) { + id_info_t *id2 = &this_scope->id_info[j]; + if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { + // in Micro Python we load closures using LOAD_FAST + EMIT_LOAD_FAST(id->qst, id->local_num); + nfree += 1; + } + } + } + } + } + + // make the function/closure + if (nfree == 0) { + EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults); + } else { + EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults); + } +} + +STATIC void compile_funcdef_lambdef_param(compiler_t *comp, const byte *p) { + const byte *p_orig = p; + + if (pt_is_rule(p, PN_typedargslist_star) + || pt_is_rule(p, PN_varargslist_star)) { + comp->have_star = true; + /* don't need to distinguish bare from named star + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; + if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { + // bare star + } else { + // named star + } + */ + + } else if (pt_is_rule(p, PN_typedargslist_dbl_star) + || pt_is_rule(p, PN_varargslist_dbl_star)) { + // named double star + // TODO do we need to do anything with this? + + } else { + const byte *p_id; + const byte *p_colon = NULL; + const byte *p_equal = NULL; + if (pt_is_any_id(p)) { + // this parameter is just an id + + p_id = p; + + } else if (pt_is_rule(p, PN_typedargslist_name)) { + // this parameter has a colon and/or equal specifier + + const byte *ptop; + p = pt_rule_extract_top(p, &ptop); + + p_id = p; + p = pt_next(p); + if (p != ptop) { + p_colon = p; + p = pt_next(p); + if (p != ptop) { + p_equal = p; + } + } + + } else { + assert(pt_is_rule(p, PN_varargslist_name)); // should be + // this parameter has an equal specifier + + p_id = pt_rule_first(p); + p_equal = pt_next(p_id); + } + + qstr q_id; + pt_extract_id(p_id, &q_id); + + if (p_equal == NULL || pt_is_null(p_equal)) { + // this parameter does not have a default value + + // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid) + if (!comp->have_star && comp->num_default_params != 0) { + compile_syntax_error(comp, p_orig, "non-default argument follows default argument"); + return; + } + + } else { + // this parameter has a default value + // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why + + if (comp->have_star) { + comp->num_dict_params += 1; + // in Micro Python we put the default dict parameters into a dictionary using the bytecode + if (comp->num_dict_params == 1) { + // in Micro Python we put the default positional parameters into a tuple using the bytecode + // we need to do this here before we start building the map for the default keywords + if (comp->num_default_params > 0) { + EMIT_ARG(build_tuple, comp->num_default_params); + } else { + EMIT(load_null); // sentinel indicating empty default positional args + } + // first default dict param, so make the map + EMIT_ARG(build_map, 0); + } + + // compile value then key, then store it to the dict + compile_node(comp, p_equal); + EMIT_ARG(load_const_str, q_id); + EMIT(store_map); + } else { + comp->num_default_params += 1; + compile_node(comp, p_equal); + } + } + + // TODO p_colon not implemented + (void)p_colon; + } +} + +STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, const byte *p, pn_kind_t pn_list_kind) { + // compile default parameters + comp->have_star = false; + comp->num_dict_params = 0; + comp->num_default_params = 0; + apply_to_single_or_list(comp, p, pn_list_kind, compile_funcdef_lambdef_param); + + if (comp->compile_error != MP_OBJ_NULL) { + return; + } + + // in Micro Python we put the default positional parameters into a tuple using the bytecode + // the default keywords args may have already made the tuple; if not, do it now + if (comp->num_default_params > 0 && comp->num_dict_params == 0) { + EMIT_ARG(build_tuple, comp->num_default_params); + EMIT(load_null); // sentinel indicating empty default keyword args + } + + // make the function + close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params); +} + +// leaves function object on stack +// returns function name +STATIC qstr compile_funcdef_helper(compiler_t *comp, const byte *p, uint emit_options) { + mp_int_t scope_idx; + p = pt_get_small_int(p, &scope_idx); + + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this function + scope_new_and_link(comp, scope_idx, SCOPE_FUNCTION, p, emit_options); + } + + p = pt_next(p); // skip function name + + // get the scope for this function + scope_t *fscope = comp->scopes[scope_idx]; + + // compile the function definition + compile_funcdef_lambdef(comp, fscope, p, PN_typedargslist); + + // return its name (the 'f' in "def f(...):") + return fscope->simple_name; +} + +// leaves class object on stack +// returns class name +STATIC qstr compile_classdef_helper(compiler_t *comp, const byte *p, uint emit_options) { + mp_int_t scope_idx; + p = pt_get_small_int(p, &scope_idx); + + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this class + scope_new_and_link(comp, scope_idx, SCOPE_CLASS, p, emit_options); + } + + EMIT(load_build_class); + + // scope for this class + scope_t *cscope = comp->scopes[scope_idx]; + + // compile the class + close_over_variables_etc(comp, cscope, 0, 0); + + // get its name + EMIT_ARG(load_const_str, cscope->simple_name); + + // second node has parent classes, if any + // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling + const byte *p_parents = pt_next(p); + if (pt_is_rule(p_parents, PN_classdef_2)) { + p_parents = NULL; + } + comp->func_arg_is_super = false; + compile_trailer_paren_helper(comp, p_parents, false, 2); + + // return its name (the 'C' in class C(...):") + return cscope->simple_name; +} + +// returns true if it was a built-in decorator (even if the built-in had an error) +STATIC bool compile_built_in_decorator(compiler_t *comp, const byte *p, const byte *ptop, uint *emit_options) { + qstr qst; + p = pt_extract_id(p, &qst); + if (qst != MP_QSTR_micropython) { + return false; + } + + if (p >= ptop || pt_next(p) != ptop) { + compile_syntax_error(comp, NULL, "invalid micropython decorator"); + return true; + } + + qstr attr; + p = pt_extract_id(p, &attr); + if (attr == MP_QSTR_bytecode) { + *emit_options = MP_EMIT_OPT_BYTECODE; +#if MICROPY_EMIT_NATIVE + } else if (attr == MP_QSTR_native) { + *emit_options = MP_EMIT_OPT_NATIVE_PYTHON; + } else if (attr == MP_QSTR_viper) { + *emit_options = MP_EMIT_OPT_VIPER; +#endif +#if MICROPY_EMIT_INLINE_THUMB + } else if (attr == MP_QSTR_asm_thumb) { + *emit_options = MP_EMIT_OPT_ASM_THUMB; +#endif + } else { + compile_syntax_error(comp, NULL, "invalid micropython decorator"); + } + + return true; +} + +STATIC void compile_decorated(compiler_t *comp, const byte *p, const byte *ptop) { + // get the list of decorators + ptop = mp_parse_node_extract_list(&p, PN_decorators); + + // inherit emit options for this function/class definition + uint emit_options = comp->scope_cur->emit_options; + + // compile each decorator + int num_non_built_in_decorators = 0; + while (p != ptop) { + assert(pt_is_rule(p, PN_decorator)); // should be + + const byte *ptop_decorator; + p = pt_rule_extract_top(p, &ptop_decorator); + + // first node contains the decorator function, which is a dotted name + const byte *ptop_dotted_name = mp_parse_node_extract_list(&p, PN_dotted_name); + + // check for built-in decorators + if (compile_built_in_decorator(comp, p, ptop_dotted_name, &emit_options)) { + // this was a built-in + + } else { + // not a built-in, compile normally + + num_non_built_in_decorators += 1; + + // compile the decorator function + p = compile_node(comp, p); + while (p != ptop_dotted_name) { + assert(pt_is_any_id(p)); // should be + qstr qst; + p = pt_extract_id(p, &qst); + EMIT_ARG(load_attr, qst); + } + + // nodes[1] contains arguments to the decorator function, if any + if (!pt_is_null_with_top(p, ptop_decorator)) { + // call the decorator function with the arguments in nodes[1] + comp->func_arg_is_super = false; + compile_node(comp, p); + } + } + + p = ptop_decorator; + } + + // compile the body (funcdef or classdef) and get its name + qstr body_name = 0; + p = pt_rule_first(ptop); // skip the rule header + if (pt_is_rule(ptop, PN_funcdef)) { + body_name = compile_funcdef_helper(comp, p, emit_options); + } else { + assert(pt_is_rule(ptop, PN_classdef)); // should be + body_name = compile_classdef_helper(comp, p, emit_options); + } + + // call each decorator + while (num_non_built_in_decorators-- > 0) { + EMIT_ARG(call_function, 1, 0, 0); + } + + // store func/class object into name + compile_store_id(comp, body_name); +} + +STATIC void compile_funcdef(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + qstr fname = compile_funcdef_helper(comp, p, comp->scope_cur->emit_options); + // store function object into function name + compile_store_id(comp, fname); +} + +STATIC void c_del_stmt(compiler_t *comp, const byte *p) { + if (pt_is_any_id(p)) { + qstr id; + pt_extract_id(p, &id); + compile_delete_id(comp, id); + } else if (pt_is_rule(p, PN_power)) { + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p, &ptop); + + const byte *p1 = compile_node(comp, p0); // base of the power node + + if (pt_is_rule(p1, PN_power_trailers)) { + const byte *p1top; + p1 = pt_rule_extract_top(p1, &p1top); + for (;;) { + const byte *p1next = pt_next(p1); + if (p1next == p1top) { + break; + } + compile_node(comp, p1); + p1 = p1next; + } + // p1 now points to final trailer for delete + } + + const byte *p2; + if (pt_is_rule(p1, PN_trailer_bracket)) { + p2 = compile_node(comp, pt_rule_first(p1)); + EMIT(delete_subscr); + } else if (pt_is_rule(p1, PN_trailer_period)) { + qstr id; + p2 = pt_extract_id(pt_rule_first(p1), &id); + EMIT_ARG(delete_attr, id); + } else { + goto cannot_delete; + } + + if (!pt_is_null_with_top(p2, ptop)) { + goto cannot_delete; + } + } else if (pt_is_rule(p, PN_atom_paren)) { + p = pt_rule_first(p); + if (pt_is_rule(p, PN_testlist_comp)) { + // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp + // or, simplify the logic here my making the parser simplify everything to a list + const byte *p0 = pt_rule_first(p); + c_del_stmt(comp, p0); + + const byte *p1 = pt_next(p0); + if (pt_is_rule(p1, PN_testlist_comp_3b)) { + // sequence of one item, with trailing comma + assert(pt_is_rule_empty(p1)); + } else if (pt_is_rule(p1, PN_testlist_comp_3c)) { + // sequence of many items + const byte *ptop; + p1 = pt_rule_extract_top(p1, &ptop); + while (p1 != ptop) { + c_del_stmt(comp, p1); + p1 = pt_next(p1); + } + } else if (pt_is_rule(p1, PN_comp_for)) { + // TODO not implemented; can't del comprehension? can we get here? + goto cannot_delete; + } else { + // sequence with 2 items + c_del_stmt(comp, p1); + } + } else { + // tuple with 1 element + c_del_stmt(comp, p); + } + } else { + // TODO is there anything else to implement? + goto cannot_delete; + } + + return; + +cannot_delete: + compile_syntax_error(comp, p, "can't delete expression"); +} + +STATIC void compile_del_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + apply_to_single_or_list(comp, p, PN_exprlist, c_del_stmt); +} + +STATIC void compile_break_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + if (comp->break_label == 0) { + compile_syntax_error(comp, p, "'break' outside loop"); + } + assert(comp->cur_except_level >= comp->break_continue_except_level); + EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level); +} + +STATIC void compile_continue_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + if (comp->continue_label == 0) { + compile_syntax_error(comp, p, "'continue' outside loop"); + } + assert(comp->cur_except_level >= comp->break_continue_except_level); + EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level); +} + +STATIC void compile_return_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + if (comp->scope_cur->kind != SCOPE_FUNCTION) { + compile_syntax_error(comp, NULL, "'return' outside function"); + return; + } + if (pt_is_null_with_top(p, ptop)) { + // no argument to 'return', so return None + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + #if 0 + // TODO do we need this optimisation? i guess it's hardly used + } else if (pt_is_rule(p, PN_test_if_expr)) { + // special case when returning an if-expression; to match CPython optimisation + mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0]; + mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1]; + + uint l_fail = comp_next_label(comp); + c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition + compile_node(comp, pns_test_if_expr->nodes[0]); // success value + EMIT(return_value); + EMIT_ARG(label_assign, l_fail); + compile_node(comp, pns_test_if_else->nodes[1]); // failure value + #endif + } else { + compile_node(comp, p); + } + EMIT(return_value); +} + +STATIC void compile_yield_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + compile_node(comp, p); + EMIT(pop_top); +} + +STATIC void compile_raise_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + if (pt_is_null_with_top(p, ptop)) { + // raise + EMIT_ARG(raise_varargs, 0); + } else if (pt_is_rule(p, PN_raise_stmt_arg)) { + // raise x from y + p = pt_rule_first(p); + p = compile_node(comp, p); + compile_node(comp, p); + EMIT_ARG(raise_varargs, 2); + } else { + // raise x + compile_node(comp, p); + EMIT_ARG(raise_varargs, 1); + } +} + +// q_base holds the base of the name +// eg a -> q_base=a +// a.b.c -> q_base=a +STATIC void do_import_name(compiler_t *comp, const byte *p, qstr *q_base) { + bool is_as = false; + if (p != NULL && pt_is_rule(p, PN_dotted_as_name)) { + // a name of the form x as y; unwrap it + p = pt_rule_first(p); // point to 'x' + pt_extract_id(pt_next(p), q_base); // extract 'y' + is_as = true; + } + if (p == NULL || pt_is_null(p)) { + // empty name (eg, from . import x) + *q_base = MP_QSTR_; + EMIT_ARG(import_name, MP_QSTR_); // import the empty string + } else if (pt_is_any_id(p)) { + // just a simple name + qstr q_full; + pt_extract_id(p, &q_full); + if (!is_as) { + *q_base = q_full; + } + EMIT_ARG(import_name, q_full); + } else { + // a name of the form a.b.c + assert(pt_is_rule(p, PN_dotted_name)); // should be + const byte *ptop; + p = pt_rule_extract_top(p, &ptop); + + if (!is_as) { + pt_extract_id(p, q_base); + } + + // work out string length + int len = -1; + for (const byte *p2 = p; p2 != ptop;) { + qstr qst; + p2 = pt_extract_id(p2, &qst); + len += 1 + qstr_len(qst); + } + + // build string + byte *q_ptr; + byte *str_dest = qstr_build_start(len, &q_ptr); + for (const byte *p2 = p; p2 != ptop;) { + if (p2 > p) { + *str_dest++ = '.'; + } + qstr qst; + p2 = pt_extract_id(p2, &qst); + mp_uint_t str_src_len; + const byte *str_src = qstr_data(qst, &str_src_len); + memcpy(str_dest, str_src, str_src_len); + str_dest += str_src_len; + } + qstr q_full = qstr_build_end(q_ptr); + EMIT_ARG(import_name, q_full); + if (is_as) { + for (const byte *p2 = pt_next(p); p2 != ptop;) { + qstr qst; + p2 = pt_extract_id(p2, &qst); + EMIT_ARG(load_attr, qst); + } + } + } +} + +STATIC void compile_dotted_as_name(compiler_t *comp, const byte *p) { + EMIT_ARG(load_const_small_int, 0); // level 0 import + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything + qstr q_base; + do_import_name(comp, p, &q_base); + compile_store_id(comp, q_base); +} + +STATIC void compile_import_name(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + apply_to_single_or_list(comp, p, PN_dotted_as_names, compile_dotted_as_name); +} + +STATIC void compile_import_from(compiler_t *comp, const byte *p, const byte *ptop) { + const byte *p_import_source = p; + + // extract the preceeding .'s (if any) for a relative import, to compute the import level + uint import_level = 0; + do { + const byte *p_rel; + if (pt_is_any_tok(p_import_source) || pt_is_rule(p_import_source, PN_one_or_more_period_or_ellipsis)) { + // This covers relative imports with dots only like "from .. import" + p_rel = p_import_source; + p_import_source = NULL; + } else if (pt_is_rule(p_import_source, PN_import_from_2b)) { + // This covers relative imports starting with dot(s) like "from .foo import" + p_rel = pt_rule_first(p_import_source); + p_import_source = pt_next(p_rel); + } else { + // Not a relative import + break; + } + + // get the list of . and/or ...'s + const byte *p_rel_top = mp_parse_node_extract_list(&p_rel, PN_one_or_more_period_or_ellipsis); + + // count the total number of .'s + while (p_rel != p_rel_top) { + if (pt_is_tok(p_rel, MP_TOKEN_DEL_PERIOD)) { + import_level++; + } else { + // should be an MP_TOKEN_ELLIPSIS + import_level += 3; + } + p_rel = pt_next(p_rel); + } + } while (0); + + p = pt_next(p); + + if (pt_is_tok(p, MP_TOKEN_OP_STAR)) { + EMIT_ARG(load_const_small_int, import_level); + + // build the "fromlist" tuple + EMIT_ARG(load_const_str, MP_QSTR__star_); + EMIT_ARG(build_tuple, 1); + + // do the import + qstr dummy_q; + do_import_name(comp, p_import_source, &dummy_q); + EMIT(import_star); + + } else { + EMIT_ARG(load_const_small_int, import_level); + + // build the "fromlist" tuple + ptop = mp_parse_node_extract_list(&p, PN_import_as_names); + uint n = 0; + for (const byte *p_list = p; p_list < ptop; p_list = pt_next(p_list), ++n) { + assert(pt_is_rule(p_list, PN_import_as_name)); + qstr id2; + pt_extract_id(pt_rule_first(p_list), &id2); + EMIT_ARG(load_const_str, id2); + } + EMIT_ARG(build_tuple, n); + + // do the import + qstr dummy_q; + do_import_name(comp, p_import_source, &dummy_q); + for (const byte *p_list = p; p_list < ptop;) { + assert(pt_is_rule(p_list, PN_import_as_name)); + const byte *p_list_top; + p_list = pt_rule_extract_top(p_list, &p_list_top); + qstr id2; + p_list = pt_extract_id(p_list, &id2); + EMIT_ARG(import_from, id2); + if (p_list == p_list_top) { + compile_store_id(comp, id2); + } else { + qstr id3; + p_list = pt_extract_id(p_list, &id3); + compile_store_id(comp, id3); + } + } + EMIT(pop_top); + } +} + +STATIC void compile_declare_global(compiler_t *comp, const byte *p_for_err, qstr qst) { + bool added; + id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); + if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) { + compile_syntax_error(comp, p_for_err, "identifier redefined as global"); + return; + } + id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; + + // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL + id_info = scope_find_global(comp->scope_cur, qst); + if (id_info != NULL) { + id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; + } +} + +STATIC void compile_global_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + if (comp->pass == MP_PASS_SCOPE) { + const byte *p_orig = p; + ptop = mp_parse_node_extract_list(&p, PN_name_list); + while (p != ptop) { + qstr qst; + p = pt_extract_id(p, &qst); + compile_declare_global(comp, p_orig, qst); + } + } +} + +STATIC void compile_declare_nonlocal(compiler_t *comp, const byte *p_for_err, qstr qst) { + bool added; + id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added); + if (!added && id_info->kind != ID_INFO_KIND_FREE) { + compile_syntax_error(comp, p_for_err, "identifier redefined as nonlocal"); + return; + } + id_info_t *id_info2 = scope_find_local_in_parent(comp->scope_cur, qst); + if (id_info2 == NULL || !(id_info2->kind == ID_INFO_KIND_LOCAL + || id_info2->kind == ID_INFO_KIND_CELL || id_info2->kind == ID_INFO_KIND_FREE)) { + compile_syntax_error(comp, p_for_err, "no binding for nonlocal found"); + return; + } + id_info->kind = ID_INFO_KIND_FREE; + scope_close_over_in_parents(comp->scope_cur, qst); +} + +STATIC void compile_nonlocal_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + if (comp->pass == MP_PASS_SCOPE) { + if (comp->scope_cur->kind == SCOPE_MODULE) { + compile_syntax_error(comp, p, "can't declare nonlocal in outer code"); + return; + } + const byte *p_orig = p; + ptop = mp_parse_node_extract_list(&p, PN_name_list); + while (p != ptop) { + qstr qst; + p = pt_extract_id(p, &qst); + compile_declare_nonlocal(comp, p_orig, qst); + } + } +} + +STATIC void compile_assert_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + uint l_end = comp_next_label(comp); + p = c_if_cond(comp, p, true, l_end); + EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython + if (!pt_is_null_with_top(p, ptop)) { + // assertion message + compile_node(comp, p); + EMIT_ARG(call_function, 1, 0, 0); + } + EMIT_ARG(raise_varargs, 1); + EMIT_ARG(label_assign, l_end); +} + +STATIC void compile_if_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + // TODO proper and/or short circuiting + + uint l_end = comp_next_label(comp); + + // optimisation: don't emit anything when "if False" + if (node_is_const_false(p)) { + p = pt_next(p); // skip if condition + p = pt_next(p); // skip if block + } else { + uint l_fail = comp_next_label(comp); + bool if_true = node_is_const_true(p); + p = c_if_cond(comp, p, false, l_fail); // if condition + + p = compile_node(comp, p); // if block + + // optimisation: skip everything else when "if True" + if (if_true) { + goto done; + } + + if ( + // optimisation: don't jump over non-existent elif/else blocks + !(pt_is_null_with_top(p, ptop) && pt_is_null_with_top(pt_next(p), ptop)) + // optimisation: don't jump if last instruction was return + && !EMIT(last_emit_was_return_value) + ) { + // jump over elif/else blocks + EMIT_ARG(jump, l_end); + } + + EMIT_ARG(label_assign, l_fail); + } + + // at this point p points to elif node (which may not exist) + + // compile elif blocks (if any) + if (p != ptop) { + const byte *p_else_top = mp_parse_node_extract_list(&p, PN_if_stmt_elif_list); + while (p != p_else_top) { + assert(pt_is_rule(p, PN_if_stmt_elif)); // should be + p = pt_rule_first(p); + + // optimisation: don't emit anything when "if False" + if (node_is_const_false(p)) { + p = pt_next(p); // skip elif condition + p = pt_next(p); // skip elif block + } else { + uint l_fail = comp_next_label(comp); + bool elif_true = node_is_const_true(p); + p = c_if_cond(comp, p, false, l_fail); // elif condition + + p = compile_node(comp, p); // elif block + + // optimisation: skip everything else when "elif True" + if (elif_true) { + goto done; + } + + // optimisation: don't jump if last instruction was return + if (!EMIT(last_emit_was_return_value)) { + EMIT_ARG(jump, l_end); + } + EMIT_ARG(label_assign, l_fail); + } + } + + // compile else block (if any) + if (p != ptop) { + compile_node(comp, p); + } + } + +done: + EMIT_ARG(label_assign, l_end); +} + +#define START_BREAK_CONTINUE_BLOCK \ + uint16_t old_break_label = comp->break_label; \ + uint16_t old_continue_label = comp->continue_label; \ + uint16_t old_break_continue_except_level = comp->break_continue_except_level; \ + uint break_label = comp_next_label(comp); \ + uint continue_label = comp_next_label(comp); \ + comp->break_label = break_label; \ + comp->continue_label = continue_label; \ + comp->break_continue_except_level = comp->cur_except_level; + +#define END_BREAK_CONTINUE_BLOCK \ + comp->break_label = old_break_label; \ + comp->continue_label = old_continue_label; \ + comp->break_continue_except_level = old_break_continue_except_level; + +STATIC void compile_while_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + START_BREAK_CONTINUE_BLOCK + + const byte *p_body = pt_next(p); + const byte *p_else = pt_next(p_body); + + if (!node_is_const_false(p)) { // optimisation: don't emit anything for "while False" + uint top_label = comp_next_label(comp); + if (!node_is_const_true(p)) { // optimisation: don't jump to cond for "while True" + EMIT_ARG(jump, continue_label); + } + EMIT_ARG(label_assign, top_label); + compile_node(comp, p_body); // body + EMIT_ARG(label_assign, continue_label); + c_if_cond(comp, p, true, top_label); // condition + } + + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + if (p_else != ptop) { + compile_node(comp, p_else); // else + } + + EMIT_ARG(label_assign, break_label); +} + +// This function compiles an optimised for-loop of the form: +// for <var> in range(<start>, <end>, <step>): +// <body> +// else: +// <else> +// <var> must be an identifier and <step> must be a small-int. +// +// Semantics of for-loop require: +// - final failing value should not be stored in the loop variable +// - if the loop never runs, the loop variable should never be assigned +// - assignments to <var>, <end> or <step> in the body do not alter the loop +// (<step> is a constant for us, so no need to worry about it changing) +// +// If <end> is a small-int, then the stack during the for-loop contains just +// the current value of <var>. Otherwise, the stack contains <end> then the +// current value of <var>. +STATIC void compile_for_stmt_optimised_range(compiler_t *comp, const byte *pn_var, + const byte *pn_start, const byte *pn_end, mp_int_t step, + const byte *pn_body, const byte *pn_else) { + + START_BREAK_CONTINUE_BLOCK + + uint top_label = comp_next_label(comp); + uint entry_label = comp_next_label(comp); + + // put the end value on the stack if it's not a small-int constant + bool end_on_stack = !pt_is_small_int(pn_end); + if (end_on_stack) { + compile_node(comp, pn_end); + } + + // compile: start + compile_node(comp, pn_start); + + EMIT_ARG(jump, entry_label); + EMIT_ARG(label_assign, top_label); + + // duplicate next value and store it to var + EMIT(dup_top); + c_assign(comp, pn_var, ASSIGN_STORE); + + // compile body + compile_node(comp, pn_body); + + EMIT_ARG(label_assign, continue_label); + + // compile: var + step + EMIT_ARG(load_const_small_int, step); + EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD); + + EMIT_ARG(label_assign, entry_label); + + // compile: if var <cond> end: goto top + if (end_on_stack) { + EMIT(dup_top_two); + EMIT(rot_two); + } else { + EMIT(dup_top); + compile_node(comp, pn_end); + } + if (step >= 0) { + EMIT_ARG(binary_op, MP_BINARY_OP_LESS); + } else { + EMIT_ARG(binary_op, MP_BINARY_OP_MORE); + } + EMIT_ARG(pop_jump_if, true, top_label); + + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + if (pn_else != NULL) { + compile_node(comp, pn_else); + } + + EMIT_ARG(label_assign, break_label); + + // discard final value of var that failed the loop condition + EMIT(pop_top); + + // discard <end> value if it's on the stack + if (end_on_stack) { + EMIT(pop_top); + } +} + +STATIC void compile_for_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable + // this is actually slower, but uses no heap memory + // for viper it will be much, much faster + if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ pt_is_any_id(p) + && pt_is_rule(pt_next(p), PN_power)) { + const byte *p_it_top; + const byte *p_it0 = pt_rule_extract_top(pt_next(p), &p_it_top); + if (!pt_is_id(p_it0, MP_QSTR_range)) { + goto optimise_fail; + } + const byte *p_it1 = pt_next(p_it0); + if (pt_is_rule(p_it1, PN_trailer_paren) + && !pt_is_rule_empty(p_it1) + && pt_next(p_it1) == p_it_top) { + // iterator is of the form range(...) with at least 1 arg + const byte *p_range_args = pt_rule_first(p_it1); + const byte *p_range_args_top = mp_parse_node_extract_list(&p_range_args, PN_arglist); + const byte *p_start = pt_const_int0; + const byte *p_end = p_range_args; + mp_int_t step = 1; + p_range_args = pt_next(p_range_args); + if (p_range_args != p_range_args_top) { + // range has at least 2 args + p_start = p_end; + p_end = p_range_args; + p_range_args = pt_next(p_range_args); + if (p_range_args != p_range_args_top) { + // range has at least 3 args + // We need to know sign of step. This is possible only if it's constant + if (!pt_is_small_int(p_range_args)) { + goto optimise_fail; + } + p_range_args = pt_get_small_int(p_range_args, &step); + if (p_range_args != p_range_args_top) { + // range has at least 4 args, so don't know how to optimise it + goto optimise_fail; + } + } + } + // can optimise + const byte *p_body = p_it_top; + const byte *p_else = pt_next(p_body); + if (p_else == ptop) { + p_else = NULL; + } + compile_for_stmt_optimised_range(comp, p, p_start, p_end, step, p_body, p_else); + return; + } + } +optimise_fail:; + + START_BREAK_CONTINUE_BLOCK + comp->break_label |= MP_EMIT_BREAK_FROM_FOR; + + uint pop_label = comp_next_label(comp); + + const byte *p_it = pt_next(p); + const byte *p_body = compile_node(comp, p_it); // iterator + EMIT(get_iter); + EMIT_ARG(label_assign, continue_label); + EMIT_ARG(for_iter, pop_label); + c_assign(comp, p, ASSIGN_STORE); // variable + const byte *p_else = compile_node(comp, p_body); // body + if (!EMIT(last_emit_was_return_value)) { + EMIT_ARG(jump, continue_label); + } + EMIT_ARG(label_assign, pop_label); + EMIT(for_iter_end); + + // break/continue apply to outer loop (if any) in the else block + END_BREAK_CONTINUE_BLOCK + + if (p_else != ptop) { + compile_node(comp, p_else); // else + } + + EMIT_ARG(label_assign, break_label); +} + +STATIC void compile_try_except(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else) { + // setup code + uint l1 = comp_next_label(comp); + uint success_label = comp_next_label(comp); + + EMIT_ARG(setup_except, l1); + compile_increase_except_level(comp); + + compile_node(comp, p_body); // body + EMIT(pop_block); + EMIT_ARG(jump, success_label); // jump over exception handler + + EMIT_ARG(label_assign, l1); // start of exception handler + EMIT(start_except_handler); + + uint l2 = comp_next_label(comp); + + while (p_except != p_except_top) { + assert(pt_is_rule(p_except, PN_try_stmt_except)); // should be + p_except = pt_rule_first(p_except); + + qstr qstr_exception_local = 0; + uint end_finally_label = comp_next_label(comp); + + if (pt_is_null(p_except)) { + // this is a catch all exception handler + if (pt_next(pt_next(p_except)) != p_except_top) { + compile_syntax_error(comp, p_except, "default 'except:' must be last"); + compile_decrease_except_level(comp); + return; + } + } else { + // this exception handler requires a match to a certain type of exception + const byte *p_exception_expr = p_except; + if (pt_is_rule(p_exception_expr, PN_try_stmt_as_name)) { + // handler binds the exception to a local + p_exception_expr = pt_rule_first(p_exception_expr); + pt_extract_id(pt_next(p_exception_expr), &qstr_exception_local); + } + EMIT(dup_top); + compile_node(comp, p_exception_expr); + EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH); + EMIT_ARG(pop_jump_if, false, end_finally_label); + } + + p_except = pt_next(p_except); + + EMIT(pop_top); + + if (qstr_exception_local == 0) { + EMIT(pop_top); + } else { + compile_store_id(comp, qstr_exception_local); + } + + EMIT(pop_top); + + uint l3 = 0; + if (qstr_exception_local != 0) { + l3 = comp_next_label(comp); + EMIT_ARG(setup_finally, l3); + compile_increase_except_level(comp); + } + p_except = compile_node(comp, p_except); + if (qstr_exception_local != 0) { + EMIT(pop_block); + } + EMIT(pop_except); + if (qstr_exception_local != 0) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(label_assign, l3); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + compile_store_id(comp, qstr_exception_local); + compile_delete_id(comp, qstr_exception_local); + + compile_decrease_except_level(comp); + EMIT(end_finally); + } + EMIT_ARG(jump, l2); + EMIT_ARG(label_assign, end_finally_label); + EMIT_ARG(adjust_stack_size, 3); // stack adjust for the 3 exception items + } + + compile_decrease_except_level(comp); + EMIT(end_finally); + EMIT(end_except_handler); + + EMIT_ARG(label_assign, success_label); + if (p_else != NULL) { + compile_node(comp, p_else); // else block + } + EMIT_ARG(label_assign, l2); +} + +STATIC void compile_try_finally(compiler_t *comp, const byte *p_body, const byte *p_except, const byte *p_except_top, const byte *p_else, const byte *p_finally) { + uint l_finally_block = comp_next_label(comp); + + EMIT_ARG(setup_finally, l_finally_block); + compile_increase_except_level(comp); + + if (p_except == NULL) { + assert(p_else == NULL); + EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state + compile_node(comp, p_body); + EMIT_ARG(adjust_stack_size, -3); + } else { + compile_try_except(comp, p_body, p_except, p_except_top, p_else); + } + EMIT(pop_block); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(label_assign, l_finally_block); + compile_node(comp, p_finally); + + compile_decrease_except_level(comp); + EMIT(end_finally); +} + +STATIC void compile_try_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + const byte* p1 = pt_next(p); + if (pt_is_rule(p1, PN_try_stmt_except) || pt_is_rule(p1, PN_try_stmt_except_list)) { + // just try-except + const byte *p1_top = mp_parse_node_extract_list(&p1, PN_try_stmt_except_list); + compile_try_except(comp, p, p1, p1_top, NULL); + } else if (pt_is_rule(p1, PN_try_stmt_except_and_more)) { + // try-except and possibly else and/or finally + const byte *p1_top; + const byte *p1_p0 = pt_rule_extract_top(p1, &p1_top); + const byte *p1_p1 = mp_parse_node_extract_list(&p1_p0, PN_try_stmt_except_list); + if (pt_next(p1_p1) == p1_top) { + // no finally, but have else + compile_try_except(comp, p, p1_p0, p1_p1, p1_p1); + } else { + // have finally, may or may not have else + compile_try_finally(comp, p, p1_p0, p1_p1, p1_p1, pt_next(p1_p1)); + } + } else { + // just try-finally + compile_try_finally(comp, p, NULL, NULL, NULL, p1); + } +} + +STATIC void compile_with_stmt_helper(compiler_t *comp, const byte *n_pre, const byte *p_body) { + if (n_pre >= p_body) { + // no more pre-bits, compile the body of the with + compile_node(comp, p_body); + } else { + uint l_end = comp_next_label(comp); + if (pt_is_rule(n_pre, PN_with_item)) { + // this pre-bit is of the form "a as b" + const byte *p = pt_rule_first(n_pre); + p = compile_node(comp, p); + EMIT_ARG(setup_with, l_end); + c_assign(comp, p, ASSIGN_STORE); + n_pre = pt_next(n_pre); + } else { + // this pre-bit is just an expression + n_pre = compile_node(comp, n_pre); + EMIT_ARG(setup_with, l_end); + EMIT(pop_top); + } + compile_increase_except_level(comp); + // compile additional pre-bits and the body + compile_with_stmt_helper(comp, n_pre, p_body); + // finish this with block + EMIT(pop_block); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(label_assign, l_end); + EMIT(with_cleanup); + compile_decrease_except_level(comp); + EMIT(end_finally); + } +} + +STATIC void compile_with_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit) + ptop = mp_parse_node_extract_list(&p, PN_with_stmt_list); + + // compile in a nested fashion + compile_with_stmt_helper(comp, p, ptop); +} + +STATIC void compile_expr_stmt(compiler_t *comp, const byte *p, const byte *ptop) { + const byte *p_n1 = pt_next(p); + + if (pt_is_null_with_top(p_n1, ptop)) { + if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) { + // for REPL, evaluate then print the expression + compile_load_id(comp, MP_QSTR___repl_print__); + compile_node(comp, p); + EMIT_ARG(call_function, 1, 0, 0); + EMIT(pop_top); + + } else { + #if 0 + // for non-REPL, evaluate then discard the expression + if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0])) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) { + // do nothing with a lonely constant + } else + #endif + { + compile_node(comp, p); // just an expression + EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack + } + } + } else if (pt_is_rule(p_n1, PN_expr_stmt_augassign)) { + c_assign(comp, p, ASSIGN_AUG_LOAD); // lhs load for aug assign + p_n1 = pt_rule_first(p_n1); + assert(pt_is_any_tok(p_n1)); + byte tok; + p_n1 = pt_tok_extract(p_n1, &tok); + mp_binary_op_t op; + switch (tok) { + case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break; + case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break; + case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break; + case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break; + case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break; + case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break; + case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break; + case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break; + case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break; + case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break; + case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break; + case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break; + } + compile_node(comp, p_n1); // rhs + EMIT_ARG(binary_op, op); + c_assign(comp, p, ASSIGN_AUG_STORE); // lhs store for aug assign + } else if (pt_is_rule(p_n1, PN_expr_stmt_assign_list)) { + const byte *p_n1_top; + p_n1 = pt_rule_extract_top(p_n1, &p_n1_top); + const byte *p_rhs = NULL; + for (const byte *pp = p_n1; pp != p_n1_top; pp = pt_next(pp)) { + p_rhs = pp; + } + compile_node(comp, p_rhs); // rhs + // following CPython, we store left-most first + //if (num rhs > 1) { always true? + EMIT(dup_top); + //} + c_assign(comp, p, ASSIGN_STORE); // lhs store + for (const byte *pp = p_n1; pp != p_rhs;) { + const byte *pp_next = pt_next(pp); + if (pp_next != p_rhs) { + EMIT(dup_top); + } + c_assign(comp, pp, ASSIGN_STORE); // middle store + pp = pp_next; + } + } else { + // single assignment + #if 0 + if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN + && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) + && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) + && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 2 + && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) { + // optimisation for a, b = c, d + mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; + mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; + if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) { + // can't optimise when it's a star expression on the lhs + goto no_optimisation; + } + compile_node(comp, pns10->nodes[0]); // rhs + compile_node(comp, pns10->nodes[1]); // rhs + EMIT(rot_two); + c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store + c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store + } else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN + && MP_PARSE_NODE_IS_STRUCT_KIND(pns1->nodes[0], PN_testlist_star_expr) + && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr) + && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns1->nodes[0]) == 3 + && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) { + // optimisation for a, b, c = d, e, f + mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns1->nodes[0]; + mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0]; + if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) { + // can't optimise when it's a star expression on the lhs + goto no_optimisation; + } + compile_node(comp, pns10->nodes[0]); // rhs + compile_node(comp, pns10->nodes[1]); // rhs + compile_node(comp, pns10->nodes[2]); // rhs + EMIT(rot_three); + EMIT(rot_two); + c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store + c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store + c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store + } else + #endif + { + //no_optimisation: + compile_node(comp, p_n1); // rhs + c_assign(comp, p, ASSIGN_STORE); // lhs store + } + } +} + +STATIC void compile_test_if_expr(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + const byte *p_test_if_else = pt_next(p); + assert(p_test_if_else != ptop && pt_is_rule(p_test_if_else, PN_test_if_else)); + p_test_if_else = pt_rule_first(p_test_if_else); + + uint l_fail = comp_next_label(comp); + uint l_end = comp_next_label(comp); + p_test_if_else = c_if_cond(comp, p_test_if_else, false, l_fail); // condition + compile_node(comp, p); // success value + EMIT_ARG(jump, l_end); + EMIT_ARG(label_assign, l_fail); + EMIT_ARG(adjust_stack_size, -1); // adjust stack size + compile_node(comp, p_test_if_else); // failure value + EMIT_ARG(label_assign, l_end); +} + +STATIC void compile_lambdef(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + mp_int_t scope_idx; + p = pt_get_small_int(p, &scope_idx); + + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this lambda + scope_new_and_link(comp, scope_idx, SCOPE_LAMBDA, p, comp->scope_cur->emit_options); + } + + // get the scope for this lambda + scope_t *this_scope = comp->scopes[scope_idx]; + + // compile the lambda definition + compile_funcdef_lambdef(comp, this_scope, p, PN_varargslist); +} + +STATIC void compile_or_and_test(compiler_t *comp, const byte *p, const byte *ptop, bool cond) { + uint l_end = comp_next_label(comp); + while (p != ptop) { + p = compile_node(comp, p); + if (p != ptop) { + EMIT_ARG(jump_if_or_pop, cond, l_end); + } + } + EMIT_ARG(label_assign, l_end); +} + +STATIC void compile_or_test(compiler_t *comp, const byte *p, const byte *ptop) { + compile_or_and_test(comp, p, ptop, true); +} + +STATIC void compile_and_test(compiler_t *comp, const byte *p, const byte *ptop) { + compile_or_and_test(comp, p, ptop, false); +} + +STATIC void compile_not_test_2(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + compile_node(comp, p); + EMIT_ARG(unary_op, MP_UNARY_OP_NOT); +} + +STATIC void compile_comparison(compiler_t *comp, const byte *p, const byte *ptop) { + int num_nodes = pt_num_nodes(p, ptop); + p = compile_node(comp, p); + bool multi = (num_nodes > 3); + uint l_fail = 0; + if (multi) { + l_fail = comp_next_label(comp); + } + for (int i = 1; i + 1 < num_nodes; i += 2) { + mp_binary_op_t op; + if (pt_is_any_tok(p)) { + byte tok; + p = pt_tok_extract(p, &tok); + switch (tok) { + case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break; + case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break; + case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break; + case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break; + case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break; + case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break; + case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break; + } + } else { + if (pt_is_rule(p, PN_comp_op_not_in)) { + op = MP_BINARY_OP_NOT_IN; + } else { + assert(pt_is_rule(p, PN_comp_op_is)); // should be + if (pt_is_rule_empty(p)) { + op = MP_BINARY_OP_IS; + } else { + op = MP_BINARY_OP_IS_NOT; + } + } + p = pt_next(p); + } + + p = compile_node(comp, p); + + if (i + 2 < num_nodes) { + EMIT(dup_top); + EMIT(rot_three); + } + + EMIT_ARG(binary_op, op); + + if (i + 2 < num_nodes) { + EMIT_ARG(jump_if_or_pop, false, l_fail); + } + } + if (multi) { + uint l_end = comp_next_label(comp); + EMIT_ARG(jump, l_end); + EMIT_ARG(label_assign, l_fail); + EMIT_ARG(adjust_stack_size, 1); + EMIT(rot_two); + EMIT(pop_top); + EMIT_ARG(label_assign, l_end); + } +} + +STATIC void compile_star_expr(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + compile_syntax_error(comp, p, "*x must be assignment target"); +} + +STATIC void c_binary_op(compiler_t *comp, const byte *p, const byte *ptop, mp_binary_op_t binary_op) { + p = compile_node(comp, p); + while (p != ptop) { + p = compile_node(comp, p); + EMIT_ARG(binary_op, binary_op); + } +} + +STATIC void compile_expr(compiler_t *comp, const byte *p, const byte *ptop) { + c_binary_op(comp, p, ptop, MP_BINARY_OP_OR); +} + +STATIC void compile_xor_expr(compiler_t *comp, const byte *p, const byte *ptop) { + c_binary_op(comp, p, ptop, MP_BINARY_OP_XOR); +} + +STATIC void compile_and_expr(compiler_t *comp, const byte *p, const byte *ptop) { + c_binary_op(comp, p, ptop, MP_BINARY_OP_AND); +} + +STATIC void compile_shift_expr(compiler_t *comp, const byte *p, const byte *ptop) { + p = compile_node(comp, p); + while (p != ptop) { + byte tok; + p = pt_tok_extract(p, &tok); + p = compile_node(comp, p); + if (tok == MP_TOKEN_OP_DBL_LESS) { + EMIT_ARG(binary_op, MP_BINARY_OP_LSHIFT); + } else { + assert(tok == MP_TOKEN_OP_DBL_MORE); // should be + EMIT_ARG(binary_op, MP_BINARY_OP_RSHIFT); + } + } +} + +STATIC void compile_arith_expr(compiler_t *comp, const byte *p, const byte *ptop) { + p = compile_node(comp, p); + while (p != ptop) { + byte tok; + p = pt_tok_extract(p, &tok); + p = compile_node(comp, p); + if (tok == MP_TOKEN_OP_PLUS) { + EMIT_ARG(binary_op, MP_BINARY_OP_ADD); + } else { + assert(tok == MP_TOKEN_OP_MINUS); // should be + EMIT_ARG(binary_op, MP_BINARY_OP_SUBTRACT); + } + } +} + +STATIC void compile_term(compiler_t *comp, const byte *p, const byte *ptop) { + p = compile_node(comp, p); + while (p != ptop) { + byte tok; + p = pt_tok_extract(p, &tok); + p = compile_node(comp, p); + if (tok == MP_TOKEN_OP_STAR) { + EMIT_ARG(binary_op, MP_BINARY_OP_MULTIPLY); + } else if (tok == MP_TOKEN_OP_DBL_SLASH) { + EMIT_ARG(binary_op, MP_BINARY_OP_FLOOR_DIVIDE); + } else if (tok == MP_TOKEN_OP_SLASH) { + EMIT_ARG(binary_op, MP_BINARY_OP_TRUE_DIVIDE); + } else { + assert(tok == MP_TOKEN_OP_PERCENT); // should be + EMIT_ARG(binary_op, MP_BINARY_OP_MODULO); + } + } +} + +STATIC void compile_factor_2(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + byte tok; + p = pt_tok_extract(p, &tok); + compile_node(comp, p); + if (tok == MP_TOKEN_OP_PLUS) { + EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE); + } else if (tok == MP_TOKEN_OP_MINUS) { + EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE); + } else { + assert(tok == MP_TOKEN_OP_TILDE); // should be + EMIT_ARG(unary_op, MP_UNARY_OP_INVERT); + } +} + +STATIC void compile_power(compiler_t *comp, const byte *p, const byte *ptop) { + // this is to handle special super() call + comp->func_arg_is_super = pt_is_id(p, MP_QSTR_super); + + compile_generic_all_nodes(comp, p, ptop); +} + +// if p_arglist==NULL then there are no arguments +STATIC void compile_trailer_paren_helper(compiler_t *comp, const byte *p_arglist, bool is_method_call, int n_positional_extra) { + // function to call is on top of stack + + // this is to handle special super() call + if (p_arglist == NULL && comp->func_arg_is_super && comp->scope_cur->kind == SCOPE_FUNCTION) { + compile_load_id(comp, MP_QSTR___class__); + // look for first argument to function (assumes it's "self") + for (int i = 0; i < comp->scope_cur->id_info_len; i++) { + if (comp->scope_cur->id_info[i].flags & ID_FLAG_IS_PARAM) { + // first argument found; load it and call super + EMIT_LOAD_FAST(MP_QSTR_, comp->scope_cur->id_info[i].local_num); + EMIT_ARG(call_function, 2, 0, 0); + return; + } + } + compile_syntax_error(comp, NULL, "super() call cannot find self"); // really a TypeError + return; + } + + // get the list of arguments + const byte *ptop; + if (p_arglist == NULL) { + ptop = NULL; + } else { + ptop = mp_parse_node_extract_list(&p_arglist, PN_arglist); + } + + // compile the arguments + // Rather than calling compile_node on the list, we go through the list of args + // explicitly here so that we can count the number of arguments and give sensible + // error messages. + int n_positional = n_positional_extra; + uint n_keyword = 0; + uint star_flags = 0; + const byte *p_star_args = NULL, *p_dblstar_args = NULL; + for (const byte *p = p_arglist; p != ptop;) { + if (pt_is_rule(p, PN_arglist_star)) { + if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) { + compile_syntax_error(comp, p, "can't have multiple *x"); + return; + } + star_flags |= MP_EMIT_STAR_FLAG_SINGLE; + p_star_args = pt_rule_first(p); + p = pt_next(p); + } else if (pt_is_rule(p, PN_arglist_dbl_star)) { + if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) { + compile_syntax_error(comp, p, "can't have multiple **x"); + return; + } + star_flags |= MP_EMIT_STAR_FLAG_DOUBLE; + p_dblstar_args = pt_rule_first(p); + p = pt_next(p); + } else if (pt_is_rule(p, PN_argument)) { + p = pt_rule_first(p); // skip rule header + const byte *p2 = pt_next(p); // get second node + if (pt_is_rule(p2, PN_comp_for)) { + // list comprehension argument + compile_comprehension(comp, p, SCOPE_GEN_EXPR); + n_positional++; + p = pt_next(pt_next(p)); + } else { + // keyword argument + if (!pt_is_any_id(p)) { + compile_syntax_error(comp, p, "LHS of keyword arg must be an id"); + return; + } + qstr kw; + p = pt_extract_id(p, &kw); + EMIT_ARG(load_const_str, kw); + p = compile_node(comp, p); + n_keyword += 1; + } + } else { + if (n_keyword > 0) { + compile_syntax_error(comp, p, "non-keyword arg after keyword arg"); + return; + } + p = compile_node(comp, p); + n_positional++; + } + } + + // compile the star/double-star arguments if we had them + // if we had one but not the other then we load "null" as a place holder + if (star_flags != 0) { + if (p_star_args == NULL) { + EMIT(load_null); + } else { + compile_node(comp, p_star_args); + } + if (p_dblstar_args == NULL) { + EMIT(load_null); + } else { + compile_node(comp, p_dblstar_args); + } + } + + // emit the function/method call + if (is_method_call) { + EMIT_ARG(call_method, n_positional, n_keyword, star_flags); + } else { + EMIT_ARG(call_function, n_positional, n_keyword, star_flags); + } +} + +STATIC void compile_power_trailers(compiler_t *comp, const byte *p, const byte *ptop) { + while (p != ptop) { + const byte *p_next = pt_next(p); + if (p_next != ptop && pt_is_rule(p, PN_trailer_period) && pt_is_rule(p_next, PN_trailer_paren)) { + // optimisation for method calls a.f(...), following PyPy + const byte *p_period = pt_rule_first(p); + const byte *p_paren; + if (pt_is_rule_empty(p_next)) { + p_paren = NULL; + } else { + p_paren = pt_rule_first(p_next); + } + qstr method_name; + pt_extract_id(p_period, &method_name); + EMIT_ARG(load_method, method_name); + compile_trailer_paren_helper(comp, p_paren, true, 0); + p = pt_next(p_next); + } else { + p = compile_node(comp, p); + } + comp->func_arg_is_super = false; + } +} + +STATIC void compile_power_dbl_star(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + compile_node(comp, p); + EMIT_ARG(binary_op, MP_BINARY_OP_POWER); +} + +// p needs to point to 2 successive nodes, first is lhs of comprehension, second is PN_comp_for node +STATIC void compile_comprehension(compiler_t *comp, const byte *p, scope_kind_t kind) { + const byte *p_comp_for = pt_next(p); + assert(pt_is_rule(p_comp_for, PN_comp_for)); + p_comp_for = pt_rule_first(p_comp_for); + + mp_int_t scope_idx; + p_comp_for = pt_get_small_int(p_comp_for, &scope_idx); + + if (comp->pass == MP_PASS_SCOPE) { + // create a new scope for this comprehension + scope_new_and_link(comp, scope_idx, kind, p, comp->scope_cur->emit_options); + } + + // get the scope for this comprehension + scope_t *this_scope = comp->scopes[scope_idx]; + + // compile the comprehension + close_over_variables_etc(comp, this_scope, 0, 0); + + compile_node(comp, pt_next(p_comp_for)); // source of the iterator + EMIT(get_iter); + EMIT_ARG(call_function, 1, 0, 0); +} + +STATIC void compile_atom_paren(compiler_t *comp, const byte *p, const byte *ptop) { + if (pt_is_null_with_top(p, ptop)) { + // an empty tuple + c_tuple(comp, NULL, NULL, NULL); + } else if (pt_is_rule(p, PN_testlist_comp)) { + p = pt_rule_first(p); + const byte *p1 = pt_next(p); + if (pt_is_rule(p1, PN_testlist_comp_3b) || pt_is_rule(p1, PN_testlist_comp_3c)) { + // tuple of one item with trailing comma (3b); or tuple of many items (3c) + c_tuple(comp, p, pt_rule_first(p1), ptop); + } else if (pt_is_rule(p1, PN_comp_for)) { + // generator expression + compile_comprehension(comp, p, SCOPE_GEN_EXPR); + } else { + // tuple with 2 items + c_tuple(comp, NULL, p, ptop); + } + } else { + // parenthesis around a single item, is just that item + compile_node(comp, p); + } +} + +STATIC void compile_atom_bracket(compiler_t *comp, const byte *p, const byte *ptop) { + if (pt_is_null_with_top(p, ptop)) { + // empty list + EMIT_ARG(build_list, 0); + } else if (pt_is_rule(p, PN_testlist_comp)) { + p = pt_rule_first(p); + const byte *p3 = pt_next(p); + if (pt_is_rule(p3, PN_testlist_comp_3b) || pt_is_rule(p3, PN_testlist_comp_3c)) { + // list of one item with trailing comma (3b); or list of many items (3c) + p3 = pt_rule_first(p3); + compile_node(comp, p); + compile_generic_all_nodes(comp, p3, ptop); + EMIT_ARG(build_list, 1 + pt_num_nodes(p3, ptop)); + } else if (pt_is_rule(p3, PN_comp_for)) { + // list comprehension + compile_comprehension(comp, p, SCOPE_LIST_COMP); + } else { + // list with 2 items + p = compile_node(comp, p); + compile_node(comp, p); + EMIT_ARG(build_list, 2); + } + } else { + // list with 1 item + compile_node(comp, p); + EMIT_ARG(build_list, 1); + } +} + +STATIC void compile_atom_brace(compiler_t *comp, const byte *p, const byte *ptop) { + if (pt_is_null_with_top(p, ptop)) { + // empty dict + EMIT_ARG(build_map, 0); + } else if (pt_is_rule(p, PN_dictorsetmaker_item)) { + // dict with one element + EMIT_ARG(build_map, 1); + compile_node(comp, p); + EMIT(store_map); + } else if (pt_is_rule(p, PN_dictorsetmaker)) { + p = pt_rule_first(p); + const byte *p1 = pt_next(p); + if (pt_is_rule(p1, PN_dictorsetmaker_list)) { + // dict/set with multiple elements + const byte *p1_top; + p1 = pt_rule_extract_top(p1, &p1_top); + + // get tail elements (2nd, 3rd, ...) + if (p1 != p1_top) { + mp_parse_node_extract_list(&p1, PN_dictorsetmaker_list2); + } + + // first element sets whether it's a dict or set + bool is_dict; + if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) { + // a dictionary + EMIT_ARG(build_map, 1 + pt_num_nodes(p1, p1_top)); + compile_node(comp, p); + EMIT(store_map); + is_dict = true; + } else { + // a set + compile_node(comp, p); // 1st value of set + is_dict = false; + } + + // process rest of elements + for (const byte *p_elem = p1; p_elem != p1_top;) { + bool is_key_value = pt_is_rule(p_elem, PN_dictorsetmaker_item); + p_elem = compile_node(comp, p_elem); + if (is_dict) { + if (!is_key_value) { + // TODO what is the correct p for error node? + compile_syntax_error(comp, p, "expecting key:value for dictionary"); + return; + } + EMIT(store_map); + } else { + if (is_key_value) { + // TODO what is the correct p for error node? + compile_syntax_error(comp, p, "expecting just a value for set"); + return; + } + } + } + + #if MICROPY_PY_BUILTINS_SET + // if it's a set, build it + if (!is_dict) { + EMIT_ARG(build_set, 1 + pt_num_nodes(p1, p1_top)); + } + #endif + } else { + assert(pt_is_rule(p1, PN_comp_for)); // should be + // dict/set comprehension + if (!MICROPY_PY_BUILTINS_SET || pt_is_rule(p, PN_dictorsetmaker_item)) { + // a dictionary comprehension + compile_comprehension(comp, p, SCOPE_DICT_COMP); + } else { + // a set comprehension + compile_comprehension(comp, p, SCOPE_SET_COMP); + } + } + } else { + // set with one element + #if MICROPY_PY_BUILTINS_SET + compile_node(comp, p); + EMIT_ARG(build_set, 1); + #else + assert(0); + #endif + } +} + +STATIC void compile_trailer_paren(compiler_t *comp, const byte *p, const byte *ptop) { + if (p >= ptop) { + p = NULL; + } + compile_trailer_paren_helper(comp, p, false, 0); +} + +STATIC void compile_trailer_bracket(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + // object who's index we want is on top of stack + compile_node(comp, p); // the index + EMIT(load_subscr); +} + +STATIC void compile_trailer_period(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + // object who's attribute we want is on top of stack + qstr attr; + p = pt_extract_id(p, &attr); + EMIT_ARG(load_attr, attr); +} + +#if MICROPY_PY_BUILTINS_SLICE +// p,ptop should be the args of subscript_3 +STATIC void compile_subscript_3_helper(compiler_t *comp, const byte *p, const byte *ptop) { + if (p == ptop) { + // [?:] + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT_ARG(build_slice, 2); + } else if (pt_is_rule(p, PN_subscript_3c)) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + if (pt_is_rule_empty(p)) { + // [?::] + EMIT_ARG(build_slice, 2); + } else { + // [?::x] + compile_node(comp, pt_rule_first(p)); + EMIT_ARG(build_slice, 3); + } + } else if (pt_is_rule(p, PN_subscript_3d)) { + p = pt_rule_first(p); + p = compile_node(comp, p); + if (pt_is_rule(p, PN_sliceop)) { + // [?:x:] + EMIT_ARG(build_slice, 2); + } else { + // [?:x:x] + compile_node(comp, p); + EMIT_ARG(build_slice, 3); + } + } else { + // [?:x] + compile_node(comp, p); + EMIT_ARG(build_slice, 2); + } +} + +STATIC void compile_subscript_2(compiler_t *comp, const byte *p, const byte *ptop) { + p = compile_node(comp, p); // start of slice + p = pt_rule_first(p); // skip header of subscript_3 + compile_subscript_3_helper(comp, p, ptop); +} + +STATIC void compile_subscript_3(compiler_t *comp, const byte *p, const byte *ptop) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + compile_subscript_3_helper(comp, p, ptop); +} +#endif // MICROPY_PY_BUILTINS_SLICE + +STATIC void compile_dictorsetmaker_item(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + // if this is called then we are compiling a dict key:value pair + compile_node(comp, pt_next(p)); // value + compile_node(comp, p); // key +} + +STATIC void compile_classdef(compiler_t *comp, const byte *p, const byte *ptop) { + (void)ptop; + qstr cname = compile_classdef_helper(comp, p, comp->scope_cur->emit_options); + // store class object into class name + compile_store_id(comp, cname); +} + +STATIC void compile_yield_expr(compiler_t *comp, const byte *p, const byte *ptop) { + if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) { + compile_syntax_error(comp, NULL, "'yield' outside function"); + return; + } + if (pt_is_null_with_top(p, ptop)) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(yield_value); + } else if (pt_is_rule(p, PN_yield_arg_from)) { + p = pt_rule_first(p); + compile_node(comp, p); + EMIT(get_iter); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(yield_from); + } else { + compile_node(comp, p); + EMIT(yield_value); + } +} + +typedef void (*compile_function_t)(compiler_t*, const byte*, const byte*); +STATIC compile_function_t compile_function[] = { +#define nc NULL +#define c(f) compile_##f +#define DEF_RULE(rule, comp, kind, ...) comp, +#include "py/grammar.h" +#undef nc +#undef c +#undef DEF_RULE + NULL, +}; + +STATIC const byte *compile_node(compiler_t *comp, const byte *p) { + //printf("CN %p %02x %02x %02x\n", p, p[0], p[1], p[2]); + if (pt_is_null(p)) { + // pass + return p + 1; + } else if (pt_is_small_int(p)) { + mp_int_t arg; + p = pt_get_small_int(p, &arg); + EMIT_ARG(load_const_small_int, arg); + return p; + } else if (pt_is_any_tok(p)) { + byte tok; + p = pt_tok_extract(p, &tok); + if (tok == MP_TOKEN_NEWLINE) { + // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline) + // or when single_input lets through a NEWLINE (user enters a blank line) + // do nothing + } else { + EMIT_ARG(load_const_tok, tok); + } + return p; + } else if (*p == MP_PT_STRING) { + qstr qst = p[1] | (p[2] << 8); + EMIT_ARG(load_const_str, qst); + return pt_next(p); + } else if (*p == MP_PT_BYTES) { + // only create and load the actual bytes object on the last pass + if (comp->pass != MP_PASS_EMIT) { + EMIT_ARG(load_const_obj, mp_const_none); + } else { + qstr qst = p[1] | (p[2] << 8); + mp_uint_t len; + const byte *data = qstr_data(qst, &len); + EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len)); + } + return pt_next(p); + } else if (pt_is_any_id(p)) { + qstr qst; + p = pt_extract_id(p, &qst); + compile_load_id(comp, qst); + return p; + } else if (*p == MP_PT_CONST_OBJECT) { + mp_uint_t idx; + p = pt_extract_const_obj(p, &idx); + EMIT_ARG(load_const_obj, (mp_obj_t)comp->co_data[idx]); + return p; + } else { + assert(*p >= MP_PT_RULE_BASE); + mp_uint_t rule_id, src_line; + const byte *ptop; + p = pt_rule_extract(p, &rule_id, &src_line, &ptop); + EMIT_ARG(set_source_line, src_line); + compile_function_t f = compile_function[rule_id]; + if (f == NULL) { + #if MICROPY_DEBUG_PRINTERS + printf("node %u cannot be compiled\n", (uint)rule_id); + //mp_parse_node_print(pn, 0); + #endif + compile_syntax_error(comp, p, "internal compiler error"); + assert(0); + return ptop; + } else { + f(comp, p, ptop); + if (comp->compile_error != MP_OBJ_NULL && comp->compile_error_line == 0) { + // add line info for the error in case it didn't have a line number + comp->compile_error_line = src_line; + } + return ptop; + } + } +} + +STATIC void compile_scope_func_lambda_param(compiler_t *comp, const byte *p, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { + (void)pn_dbl_star; + // TODO verify that *k and **k are last etc + qstr param_name = MP_QSTR_NULL; + uint param_flag = ID_FLAG_IS_PARAM; + if (pt_is_any_id(p)) { + pt_extract_id(p, ¶m_name); + if (comp->have_star) { + // comes after a star, so counts as a keyword-only parameter + comp->scope_cur->num_kwonly_args += 1; + } else { + // comes before a star, so counts as a positional parameter + comp->scope_cur->num_pos_args += 1; + } + } else { + if (pt_is_rule(p, pn_name)) { + pt_extract_id(pt_rule_first(p), ¶m_name); + if (comp->have_star) { + // comes after a star, so counts as a keyword-only parameter + comp->scope_cur->num_kwonly_args += 1; + } else { + // comes before a star, so counts as a positional parameter + comp->scope_cur->num_pos_args += 1; + } + } else if (pt_is_rule(p, pn_star)) { + comp->have_star = true; + param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM; + if (pt_is_rule_empty(p)) { + // bare star + // TODO see http://www.python.org/dev/peps/pep-3102/ + //assert(comp->scope_cur->num_dict_params == 0); + } else if (pt_is_any_id(pt_rule_first(p))) { + // named star + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; + pt_extract_id(pt_rule_first(p), ¶m_name); + } else { + assert(pt_is_rule(pt_rule_first(p), PN_tfpdef)); // should be + // named star with possible annotation + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; + pt_extract_id(pt_rule_first(pt_rule_first(p)), ¶m_name); + } + } else { + assert(pt_is_rule(p, pn_dbl_star)); // should be + pt_extract_id(pt_rule_first(p), ¶m_name); + param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; + comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS; + } + } + + if (param_name != MP_QSTR_NULL) { + bool added; + id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); + if (!added) { + compile_syntax_error(comp, p, "name reused for argument"); + return; + } + id_info->kind = ID_INFO_KIND_LOCAL; + id_info->flags = param_flag; + } +} + +STATIC void compile_scope_func_param(compiler_t *comp, const byte *p) { + compile_scope_func_lambda_param(comp, p, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star); +} + +STATIC void compile_scope_lambda_param(compiler_t *comp, const byte *p) { + compile_scope_func_lambda_param(comp, p, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); +} + +#if MICROPY_EMIT_NATIVE +STATIC void compile_scope_func_annotations(compiler_t *comp, const byte *p) { + if (pt_is_rule(p, PN_typedargslist_name)) { + // named parameter with possible annotation + // fallthrough + } else if (pt_is_rule(p, PN_typedargslist_star)) { + const byte *p0 = pt_rule_first(p); + if (pt_is_rule(p0, PN_tfpdef)) { + // named star with possible annotation + p = p0; + // fallthrough + } else { + // no annotation + return; + } + } else if (pt_is_rule(p, PN_typedargslist_dbl_star)) { + // double star with possible annotation + // fallthrough + } else { + // no annotation + return; + } + + // p should be a rule whose first node is an identifier and second may be the annotation + + const byte *ptop; + p = pt_rule_extract_top(p, &ptop); + + qstr param_name; + p = pt_extract_id(p, ¶m_name); + + if (!pt_is_null_with_top(p, ptop)) { + id_info_t *id_info = scope_find(comp->scope_cur, param_name); + assert(id_info != NULL); + + if (pt_is_any_id(p)) { + qstr arg_type; + pt_extract_id(p, &arg_type); + EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type); + } else { + compile_syntax_error(comp, p, "parameter annotation must be an identifier"); + } + } +} +#endif // MICROPY_EMIT_NATIVE + +STATIC void compile_scope_comp_iter(compiler_t *comp, const byte *p_iter, const byte *p_inner_expr, int l_top, int for_depth) { + tail_recursion: + if (p_iter == NULL) { + // no more nested if/for; compile inner expression + compile_node(comp, p_inner_expr); + if (comp->scope_cur->kind == SCOPE_LIST_COMP) { + EMIT_ARG(list_append, for_depth + 2); + } else if (comp->scope_cur->kind == SCOPE_DICT_COMP) { + EMIT_ARG(map_add, for_depth + 2); + #if MICROPY_PY_BUILTINS_SET + } else if (comp->scope_cur->kind == SCOPE_SET_COMP) { + EMIT_ARG(set_add, for_depth + 2); + #endif + } else { + EMIT(yield_value); + EMIT(pop_top); + } + } else if (pt_is_rule(p_iter, PN_comp_if)) { + // if condition + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p_iter, &ptop); + p_iter = c_if_cond(comp, p0, false, l_top); + if (p_iter == ptop) { + p_iter = NULL; + } + goto tail_recursion; + } else { + assert(pt_is_rule(p_iter, PN_comp_for)); // should be + // for loop + const byte *ptop; + const byte *p0 = pt_rule_extract_top(p_iter, &ptop); + p0 = pt_next(p0); // skip scope index + const byte *p2 = compile_node(comp, pt_next(p0)); + uint l_end2 = comp_next_label(comp); + uint l_top2 = comp_next_label(comp); + EMIT(get_iter); + EMIT_ARG(label_assign, l_top2); + EMIT_ARG(for_iter, l_end2); + c_assign(comp, p0, ASSIGN_STORE); + compile_scope_comp_iter(comp, p2 == ptop ? NULL : p2, p_inner_expr, l_top2, for_depth + 1); + EMIT_ARG(jump, l_top2); + EMIT_ARG(label_assign, l_end2); + EMIT(for_iter_end); + } +} + +#if 0 +STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) { +#if MICROPY_ENABLE_DOC_STRING + // see http://www.python.org/dev/peps/pep-0257/ + + // look for the first statement + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { + // a statement; fall through + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) { + // file input; find the first non-newline node + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; + int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); + for (int i = 0; i < num_nodes; i++) { + pn = pns->nodes[i]; + if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) { + // not a newline, so this is the first statement; finish search + break; + } + } + // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully + } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) { + // a list of statements; get the first one + pn = ((mp_parse_node_struct_t*)pn)->nodes[0]; + } else { + return; + } + + // check the first statement for a doc string + if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) { + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; + if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) + && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING) + || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) { + // compile the doc string + compile_node(comp, pns->nodes[0]); + // store the doc string + compile_store_id(comp, MP_QSTR___doc__); + } + } +#else + (void)comp; + (void)pn; +#endif +} +#endif + +STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) { + comp->pass = pass; + comp->scope_cur = scope; + comp->next_label = 1; + EMIT_ARG(start_pass, pass, scope); + + if (comp->pass == MP_PASS_SCOPE) { + // reset maximum stack sizes in scope + // they will be computed in this first pass + scope->stack_size = 0; + scope->exc_stack_size = 0; + } + + // compile + if (pt_is_rule(scope->pn, PN_eval_input)) { + assert(scope->kind == SCOPE_MODULE); + compile_node(comp, pt_rule_first(scope->pn)); // compile the expression + EMIT(return_value); + } else if (scope->kind == SCOPE_MODULE) { + if (!comp->is_repl) { + //check_for_doc_string(comp, scope->pn); + } + compile_node(comp, scope->pn); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(return_value); + } else if (scope->kind == SCOPE_FUNCTION) { + const byte *p = scope->pn; + + p = pt_next(p); // skip func name + + // work out number of parameters, keywords and default parameters, and add them to the id_info array + // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) + if (comp->pass == MP_PASS_SCOPE) { + comp->have_star = false; + apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_param); + } + + #if MICROPY_EMIT_NATIVE + else if (scope->emit_options == MP_EMIT_OPT_VIPER) { + // compile annotations; only needed on latter compiler passes + // only needed for viper emitter + + // argument annotations + apply_to_single_or_list(comp, p, PN_typedargslist, compile_scope_func_annotations); + + const byte *p_ret = pt_next(p); // skip arg list + + // next node is return/whole function annotation + if (pt_is_any_id(p_ret)) { + qstr ret_type; + pt_extract_id(p_ret, &ret_type); + EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type); + } else if (!pt_is_null(p_ret)) { + compile_syntax_error(comp, p_ret, "return annotation must be an identifier"); + } + } + #endif // MICROPY_EMIT_NATIVE + + p = pt_next(p); // skip arg list + p = pt_next(p); // skip return annotation + + compile_node(comp, p); // function body + + // emit return if it wasn't the last opcode + if (!EMIT(last_emit_was_return_value)) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + EMIT(return_value); + } + } else if (scope->kind == SCOPE_LAMBDA) { + const byte *p = scope->pn; + + // work out number of parameters, keywords and default parameters, and add them to the id_info array + // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc) + if (comp->pass == MP_PASS_SCOPE) { + comp->have_star = false; + apply_to_single_or_list(comp, p, PN_varargslist, compile_scope_lambda_param); + } + + p = pt_next(p); // skip arg list + + compile_node(comp, p); // lambda body + + // if the lambda is a generator, then we return None, not the result of the expression of the lambda + if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) { + EMIT(pop_top); + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } + EMIT(return_value); + } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) { + const byte *p = scope->pn; + const byte *p_comp_for = pt_next(p); + const byte *p_comp_for_top; + p_comp_for = pt_rule_extract_top(p_comp_for, &p_comp_for_top); + p_comp_for = pt_next(p_comp_for); // skip scope index + + // We need a unique name for the comprehension argument (the iterator). + // CPython uses .0, but we should be able to use anything that won't + // clash with a user defined variable. Best to use an existing qstr, + // so we use the blank qstr. + qstr qstr_arg = MP_QSTR_; + if (comp->pass == MP_PASS_SCOPE) { + bool added; + id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added); + assert(added); + id_info->kind = ID_INFO_KIND_LOCAL; + scope->num_pos_args = 1; + } + + if (scope->kind == SCOPE_LIST_COMP) { + EMIT_ARG(build_list, 0); + } else if (scope->kind == SCOPE_DICT_COMP) { + EMIT_ARG(build_map, 0); + #if MICROPY_PY_BUILTINS_SET + } else if (scope->kind == SCOPE_SET_COMP) { + EMIT_ARG(build_set, 0); + #endif + } + + uint l_end = comp_next_label(comp); + uint l_top = comp_next_label(comp); + compile_load_id(comp, qstr_arg); + EMIT_ARG(label_assign, l_top); + EMIT_ARG(for_iter, l_end); + c_assign(comp, p_comp_for, ASSIGN_STORE); + const byte *p_comp_for_p2 = pt_next(pt_next(p_comp_for)); + if (p_comp_for_p2 == p_comp_for_top) { + p_comp_for_p2 = NULL; + } + compile_scope_comp_iter(comp, p_comp_for_p2, p, l_top, 0); + EMIT_ARG(jump, l_top); + EMIT_ARG(label_assign, l_end); + EMIT(for_iter_end); + + if (scope->kind == SCOPE_GEN_EXPR) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } + EMIT(return_value); + } else { + assert(scope->kind == SCOPE_CLASS); + + if (comp->pass == MP_PASS_SCOPE) { + bool added; + id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added); + assert(added); + id_info->kind = ID_INFO_KIND_LOCAL; + } + + // just to check, should remove this code + qstr class_name; + pt_extract_id(scope->pn, &class_name); + assert(class_name == scope->simple_name); + + compile_load_id(comp, MP_QSTR___name__); + compile_store_id(comp, MP_QSTR___module__); + EMIT_ARG(load_const_str, scope->simple_name); + compile_store_id(comp, MP_QSTR___qualname__); + + const byte *p = pt_next(pt_next(scope->pn)); // skip name, bases + //check_for_doc_string(comp, p); + compile_node(comp, p); // class body + + id_info_t *id = scope_find(scope, MP_QSTR___class__); + assert(id != NULL); + if (id->kind == ID_INFO_KIND_LOCAL) { + EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); + } else { + EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num); + } + EMIT(return_value); + } + + EMIT(end_pass); + + // make sure we match all the exception levels + assert(comp->cur_except_level == 0); +} + +#if MICROPY_EMIT_INLINE_THUMB +// requires 3 passes: SCOPE, CODE_SIZE, EMIT +STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) { + comp->pass = pass; + comp->scope_cur = scope; + comp->next_label = 1; + + if (scope->kind != SCOPE_FUNCTION) { + compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function"); + return; + } + + if (comp->pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM_ARG(start_pass, comp->pass, comp->scope_cur, &comp->compile_error); + } + + // get the function definition parse node + assert(MP_PARSE_NODE_IS_STRUCT(scope->pn)); + mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn; + assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef); + + //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name + + // parameters are in pns->nodes[1] + if (comp->pass == MP_PASS_CODE_SIZE) { + mp_parse_node_t *pn_params; + int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params); + scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params); + if (comp->compile_error != MP_OBJ_NULL) { + goto inline_asm_error; + } + } + + assert(MP_PARSE_NODE_IS_NULL(pns->nodes[2])); // type + + mp_parse_node_t pn_body = pns->nodes[3]; // body + mp_parse_node_t *nodes; + int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes); + + for (int i = 0; i < num; i++) { + assert(MP_PARSE_NODE_IS_STRUCT(nodes[i])); + mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i]; + if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) { + // no instructions + continue; + } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) { + // not an instruction; error + not_an_instruction: + compile_syntax_error(comp, nodes[i], "expecting an assembler instruction"); + return; + } + + // check structure of parse node + assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0])); + if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) { + goto not_an_instruction; + } + pns2 = (mp_parse_node_struct_t*)pns2->nodes[0]; + if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_power) { + goto not_an_instruction; + } + if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) { + goto not_an_instruction; + } + if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) { + goto not_an_instruction; + } + assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[2])); + + // parse node looks like an instruction + // get instruction name and args + qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]); + pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren + mp_parse_node_t *pn_arg; + int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg); + + // emit instructions + if (op == MP_QSTR_label) { + if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], "'label' requires 1 argument"); + return; + } + uint lab = comp_next_label(comp); + if (pass > MP_PASS_SCOPE) { + if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], "label redefined"); + return; + } + } + } else if (op == MP_QSTR_align) { + if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], "'align' requires 1 argument"); + return; + } + if (pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM_ARG(align, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0])); + } + } else if (op == MP_QSTR_data) { + if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) { + compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments"); + return; + } + if (pass > MP_PASS_SCOPE) { + mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]); + for (uint j = 1; j < n_args; j++) { + if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) { + compile_syntax_error(comp, nodes[i], "'data' requires integer arguments"); + return; + } + EMIT_INLINE_ASM_ARG(data, bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j])); + } + } + } else { + if (pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg); + } + } + + if (comp->compile_error != MP_OBJ_NULL) { + pns = pns2; // this is the parse node that had the error + goto inline_asm_error; + } + } + + if (comp->pass > MP_PASS_SCOPE) { + EMIT_INLINE_ASM(end_pass); + } + + if (comp->compile_error != MP_OBJ_NULL) { + // inline assembler had an error; set line for its exception + inline_asm_error: + comp->compile_error_line = pns->source_line; + } +} +#endif + +STATIC void scope_compute_things(scope_t *scope) { + // in Micro Python we put the *x parameter after all other parameters (except **y) + if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { + id_info_t *id_param = NULL; + for (int i = scope->id_info_len - 1; i >= 0; i--) { + id_info_t *id = &scope->id_info[i]; + if (id->flags & ID_FLAG_IS_STAR_PARAM) { + if (id_param != NULL) { + // swap star param with last param + id_info_t temp = *id_param; *id_param = *id; *id = temp; + } + break; + } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) { + id_param = id; + } + } + } + + // in functions, turn implicit globals into explicit globals + // compute the index of each local + scope->num_locals = 0; + for (int i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) { + // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL + continue; + } + if (scope->kind >= SCOPE_FUNCTION && scope->kind <= SCOPE_GEN_EXPR && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { + id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; + } + // params always count for 1 local, even if they are a cell + if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { + id->local_num = scope->num_locals++; + } + } + + // compute the index of cell vars + for (int i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + // in Micro Python the cells come right after the fast locals + // parameters are not counted here, since they remain at the start + // of the locals, even if they are cell vars + if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) { + id->local_num = scope->num_locals; + scope->num_locals += 1; + } + } + + // compute the index of free vars + // make sure they are in the order of the parent scope + if (scope->parent != NULL) { + int num_free = 0; + for (int i = 0; i < scope->parent->id_info_len; i++) { + id_info_t *id = &scope->parent->id_info[i]; + if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) { + for (int j = 0; j < scope->id_info_len; j++) { + id_info_t *id2 = &scope->id_info[j]; + if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) { + assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params + // in Micro Python the frees come first, before the params + id2->local_num = num_free; + num_free += 1; + } + } + } + } + // in Micro Python shift all other locals after the free locals + if (num_free > 0) { + for (int i = 0; i < scope->id_info_len; i++) { + id_info_t *id = &scope->id_info[i]; + if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) { + id->local_num += num_free; + } + } + scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function + scope->num_locals += num_free; + } + } +} + +mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) { + // put compiler state on the stack, it's relatively small + compiler_t comp_state = {0}; + compiler_t *comp = &comp_state; + + comp->source_file = source_file; + comp->is_repl = is_repl; + comp->co_data = parse_tree->co_data; + + // create the array of scopes + comp->num_scopes = pt_small_int_value(pt_next(parse_tree->root)); + comp->scopes = m_new0(scope_t*, comp->num_scopes); + + // create the module scope + scope_new_and_link(comp, 0, SCOPE_MODULE, parse_tree->root, emit_opt); + + // create standard emitter; it's used at least for MP_PASS_SCOPE + emit_t *emit_bc = emit_bc_new(); + + // compile pass 1 + comp->emit = emit_bc; + #if MICROPY_EMIT_NATIVE + comp->emit_method_table = &emit_bc_method_table; + #endif + uint max_num_labels = 0; + + // grrr: scope for nested comp_for's are not used, unless they are parenthesised + // and become individual generators; in this case they are parsed in the wrong + // direction for allocation of scope id + bool keep_going = true; + while (keep_going) { + keep_going = false; + + for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) { + scope_t *s = comp->scopes[i]; + if (s == NULL) { continue; } // no scope (yet?) + if (s->raw_code != NULL) { continue; } // scope already did pass 1 + keep_going = true; + s->raw_code = mp_emit_glue_new_raw_code(); + if (false) { +#if MICROPY_EMIT_INLINE_THUMB + } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) { + compile_scope_inline_asm(comp, s, MP_PASS_SCOPE); +#endif + } else { + compile_scope(comp, s, MP_PASS_SCOPE); + } + + // update maximim number of labels needed + if (comp->next_label > max_num_labels) { + max_num_labels = comp->next_label; + } + } + } + + // compute some things related to scope and identifiers + for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) { + scope_t *s = comp->scopes[i]; + if (s == NULL) { continue; } // TODO scope for nested comp_for's are not used + scope_compute_things(s); + } + + // set max number of labels now that it's calculated + emit_bc_set_max_num_labels(emit_bc, max_num_labels); + + // compile pass 2 and 3 +#if MICROPY_EMIT_NATIVE + emit_t *emit_native = NULL; +#endif +#if MICROPY_EMIT_INLINE_THUMB + emit_inline_asm_t *emit_inline_thumb = NULL; +#endif + for (uint i = 0; i < comp->num_scopes && comp->compile_error == MP_OBJ_NULL; ++i) { + scope_t *s = comp->scopes[i]; + if (s == NULL) { continue; } + if (false) { + // dummy + +#if MICROPY_EMIT_INLINE_THUMB + } else if (s->emit_options == MP_EMIT_OPT_ASM_THUMB) { + // inline assembly for thumb + if (emit_inline_thumb == NULL) { + emit_inline_thumb = emit_inline_thumb_new(max_num_labels); + } + comp->emit = NULL; + comp->emit_inline_asm = emit_inline_thumb; + comp->emit_inline_asm_method_table = &emit_inline_thumb_method_table; + compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE); + if (comp->compile_error == MP_OBJ_NULL) { + compile_scope_inline_asm(comp, s, MP_PASS_EMIT); + } +#endif + + } else { + + // choose the emit type + + switch (s->emit_options) { + +#if MICROPY_EMIT_NATIVE + case MP_EMIT_OPT_NATIVE_PYTHON: + case MP_EMIT_OPT_VIPER: +#if MICROPY_EMIT_X64 + if (emit_native == NULL) { + emit_native = emit_native_x64_new(&comp->compile_error, max_num_labels); + } + comp->emit_method_table = &emit_native_x64_method_table; +#elif MICROPY_EMIT_X86 + if (emit_native == NULL) { + emit_native = emit_native_x86_new(&comp->compile_error, max_num_labels); + } + comp->emit_method_table = &emit_native_x86_method_table; +#elif MICROPY_EMIT_THUMB + if (emit_native == NULL) { + emit_native = emit_native_thumb_new(&comp->compile_error, max_num_labels); + } + comp->emit_method_table = &emit_native_thumb_method_table; +#elif MICROPY_EMIT_ARM + if (emit_native == NULL) { + emit_native = emit_native_arm_new(&comp->compile_error, max_num_labels); + } + comp->emit_method_table = &emit_native_arm_method_table; +#endif + comp->emit = emit_native; + EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0); + break; +#endif // MICROPY_EMIT_NATIVE + + default: + comp->emit = emit_bc; + #if MICROPY_EMIT_NATIVE + comp->emit_method_table = &emit_bc_method_table; + #endif + break; + } + + // need a pass to compute stack size + compile_scope(comp, s, MP_PASS_STACK_SIZE); + + // second last pass: compute code size + if (comp->compile_error == MP_OBJ_NULL) { + compile_scope(comp, s, MP_PASS_CODE_SIZE); + } + + // final pass: emit code + if (comp->compile_error == MP_OBJ_NULL) { + compile_scope(comp, s, MP_PASS_EMIT); + } + } + } + + if (comp->compile_error != MP_OBJ_NULL) { + // if there is no line number for the error then use the line + // number for the start of this scope + compile_error_set_line(comp, comp->scope_cur->pn); + // add a traceback to the exception using relevant source info + mp_obj_exception_add_traceback(comp->compile_error, comp->source_file, + comp->compile_error_line, comp->scope_cur->simple_name); + } + + // free the emitters + + emit_bc_free(emit_bc); +#if MICROPY_EMIT_NATIVE + if (emit_native != NULL) { +#if MICROPY_EMIT_X64 + emit_native_x64_free(emit_native); +#elif MICROPY_EMIT_X86 + emit_native_x86_free(emit_native); +#elif MICROPY_EMIT_THUMB + emit_native_thumb_free(emit_native); +#elif MICROPY_EMIT_ARM + emit_native_arm_free(emit_native); +#endif + } +#endif +#if MICROPY_EMIT_INLINE_THUMB + if (emit_inline_thumb != NULL) { + emit_inline_thumb_free(emit_inline_thumb); + } +#endif + + // free the parse tree + mp_parse_tree_clear(parse_tree); + + mp_raw_code_t *outer_raw_code = comp->scopes[0]->raw_code; + + // free the scopes + for (uint i = 0; i < comp->num_scopes; ++i) { + if (comp->scopes[i] == NULL) { continue; } // TODO scope for nested comp_for's are not used + scope_free(comp->scopes[i]); + } + m_del(scope_t*, comp->scopes, comp->num_scopes); + + if (comp->compile_error != MP_OBJ_NULL) { + nlr_raise(comp->compile_error); + } else { + // return function that executes the outer module + return mp_make_function_from_raw_code(outer_raw_code, MP_OBJ_NULL, MP_OBJ_NULL); + } +} |