summaryrefslogtreecommitdiffstatshomepage
path: root/docs/esp8266
diff options
context:
space:
mode:
authorDamien George <damien.p.george@gmail.com>2016-03-08 23:06:15 +0000
committerDamien George <damien.p.george@gmail.com>2016-03-08 23:06:15 +0000
commit809fbeefb7533a1f83339c28a92d213a1a5990d0 (patch)
tree18b3ea6492944836d45d4ebb9e30744f3abc4672 /docs/esp8266
parentdcdf8f2d1404c8a9b6fb91ae1b31c6b991a08017 (diff)
downloadmicropython-809fbeefb7533a1f83339c28a92d213a1a5990d0.tar.gz
micropython-809fbeefb7533a1f83339c28a92d213a1a5990d0.zip
docs: Add esp8266 quick reference page, with basic info.
Diffstat (limited to 'docs/esp8266')
-rw-r--r--docs/esp8266/quickref.rst238
1 files changed, 238 insertions, 0 deletions
diff --git a/docs/esp8266/quickref.rst b/docs/esp8266/quickref.rst
new file mode 100644
index 0000000000..40b8c52e51
--- /dev/null
+++ b/docs/esp8266/quickref.rst
@@ -0,0 +1,238 @@
+.. _quickref:
+
+Quick reference for the ESP8266
+===============================
+
+.. image:: https://learn.adafruit.com/system/assets/assets/000/028/689/medium640/adafruit_products_pinoutstop.jpg
+ :alt: Adafruit Feather HUZZAH board
+ :width: 640px
+
+The Adafruit Feather HUZZAH board (image attribution: Adafruit).
+
+General board control
+---------------------
+
+Tab-completion is useful to find out what methods an object has.
+Paste mode (ctrl-E) is useful to paste a large slab of Python code into
+the REPL.
+
+The ``machine`` module::
+
+ import machine
+
+ machine.freq() # get the current frequency of the CPU
+ machine.freq(160000000) # set the CPU frequency to 160 MHz
+
+The ``esp`` module::
+
+ import esp
+
+ esp.osdebug(None) # turn off vendor O/S debugging messages
+ esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)
+
+Networking
+----------
+
+The ``network`` module::
+
+ import network
+
+ wlan = network.WLAN(network.STA_IF) # create station interface
+ wlan.active(True) # activate the interface
+ wlan.scan() # scan for access points
+ wlan.isconnected() # check if the station is connected to an AP
+ wlan.connect('essid', 'password') # connect to an AP
+ wlan.mac() # get the interface's MAC adddress
+ wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses
+
+ ap = network.WLAN(network.AP_IF) # create access-point interface
+ ap.active(True) # activate the interface
+ ap.config(essid='ESP-AP') # set the ESSID of the access point
+
+A useful function for connecting to your local WiFi network is::
+
+ def do_connect():
+ import network
+ wlan = network.WLAN(wlan.STA_IF)
+ wlan.active(True)
+ if not wlan.isconnected():
+ print('connecting to network...')
+ wlan.connect('essid', 'password')
+ while not wlan.isconnected():
+ pass
+ print('network config:', wlan.ifconfig())
+
+Once the network is established the ``socket`` module can be used
+to create and use TCP/UDP sockets as usual.
+
+Delay and timing
+----------------
+
+Use the ``time`` module::
+
+ import time
+
+ time.sleep(1) # sleep for 1 second
+ time.sleep_ms(500) # sleep for 500 milliseconds
+ time.sleep_us(10) # sleep for 10 microseconds
+ start = time.ticks_ms() # get millisecond counter
+ delta = time.ticks_diff(start, time.ticks_ms()) # compute time difference
+
+Timers
+------
+
+Use the ``machine.Timer`` class::
+
+ from machine import Timer
+
+ tim = Timer(0)
+ tim.init(period=10, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
+ tim.init(period=1, mode=Timer.PERIODIC, callback=lambda t:print(2))
+
+Pins and GPIO
+-------------
+
+Use the ``machine.Pin`` class::
+
+ from machine import Pin
+
+ p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
+ p0.high() # set pin to high
+ p0.low() # set pin to low
+ p0.value(1) # set pin to high
+
+ p2 = Pin(2, Pin.IN) # create input pin on GPIO2
+ print(p2.value()) # get value, 0 or 1
+
+ p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
+ p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation
+
+Available pins are: 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16.
+Note that Pin(1) and Pin(3) are REPL UART TX and RX respectively.
+
+PWM (pulse width modulation)
+----------------------------
+
+PWM can be enabled on all pins except Pin(16). There is a single frequency
+for all channels, with range between 1 and 1000 (measured in Hz). The duty
+cycle is between 0 and 1023 inclusive.
+
+Use the ``machine.PWM`` class::
+
+ from machine import Pin, PWM
+
+ pwm0 = PWM(Pin(0)) # create PWM object from a pin
+ pwm0.freq() # get current frequency
+ pwm0.freq(1000) # set frequency
+ pwm0.duty() # get current duty cycle
+ pwm0.duty(200) # set duty cycle
+ pwm0.deinit() # turn off PWM on the pin
+
+ pwm2 = PWM(Pin(2), freq=500, duty=512) # create and configure in one go
+
+ADC (analog to digital conversion)
+----------------------------------
+
+ADC is available on a dedicated pin.
+Note that input voltages on the ADC pin must be between 0v and 1.0v.
+
+Use the ``machine.ADC`` class::
+
+ from machine import ADC
+
+ adc = ADC(0) # create ADC object on ADC pin
+ adc.read() # read value, 0-1024
+
+SPI bus
+-------
+
+The SPI driver is implemented in software and works on all pins::
+
+ from machine import Pin, SPI
+
+ # construct an SPI bus on the given pins
+ # polarity is the idle state of SCK
+ # phase=0 means sample on the first edge of SCK, phase=1 means the second
+ spi = SPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))
+
+ spi.init(baudrate=200000) # set the baudrate
+
+ spi.read(10) # read 10 bytes on MISO
+ spi.read(10, 0xff) # read 10 bytes while outputing 0xff on MOSI
+
+ buf = bytearray(50) # create a buffer
+ spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
+ spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI
+
+ spi.write(b'12345') # write 5 bytes on MOSI
+
+ buf = bytearray(4) # create a buffer
+ spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
+ spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf
+
+I2C bus
+-------
+
+The I2C driver is implemented in software and works on all pins::
+
+ from machine import Pin, I2C
+
+ # construct an I2C bus
+ i2c = I2C(frequency=100000, scl=Pin(5), sda=Pin(4))
+
+ i2c.writeto(0x3a, '12') # write '12' to slave device with address 0x3a
+
+ buf = bytearray(10) # create a buffer with 10 bytes
+ i2c.writeto(0x3a, buf) # write the given buffer to the slave
+
+ i2c.writeto(0x3a, buf, stop=False) # don't send a stop bit after writing
+
+OneWire driver
+--------------
+
+The OneWire driver is implemented in software and works on all pins::
+
+ from machine import Pin
+ import onewire
+
+ ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
+ ow.scan() # return a list of devices on the bus
+ ow.reset() # reset the bus
+ ow.read_byte() # read a byte
+ ow.read_bytes(5) # read 5 bytes
+ ow.write_byte(0x12) # write a byte on the bus
+ ow.write_bytes('123') # write bytes on the bus
+ ow.select_rom(b'12345678') # select a specific device by its ROM code
+
+There is a specific driver for DS18B20 devices::
+
+ import time
+ ds = onewire.DS18B20(ow)
+ roms = ds.scan()
+ ds.start_measure()
+ time.sleep_ms(750)
+ for rom in roms:
+ print(ds.get_temp(rom))
+
+Be sure to put a 4.7k pull-up resistor on the data line.
+
+NeoPixel driver
+---------------
+
+Use the ``neopixel`` module::
+
+ from machine import Pin
+ import neopixel
+
+ pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
+ np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
+ np[0] = (255, 255, 255) # set the first pixel to white
+ np.write() # write data to all pixels
+ r, g, b = np[0] # get first pixel colour
+
+ neopixel.demo(np) # run a demo
+
+For low-level driving of a NeoPixel::
+
+ import esp
+ esp.neopixel_write(pin, grb_buf, is800khz)