| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
| |
The use of PySys_GetObject() and _PySys_GetAttr(), which return a borrowed
reference, has been replaced by using one of the following functions, which
return a strong reference and distinguish a missing attribute from an error:
_PySys_GetOptionalAttr(), _PySys_GetOptionalAttrString(),
_PySys_GetRequiredAttr(), and _PySys_GetRequiredAttrString().
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CPython current temporarily changes `PYMEM_DOMAIN_RAW` to the default
allocator during initialization and shutdown. The motivation is to
ensure that core runtime structures are allocated and freed using the
same allocator. However, modifying the current allocator changes global
state and is not thread-safe even with the GIL. Other threads may be
allocating or freeing objects use PYMEM_DOMAIN_RAW; they are not
required to hold the GIL to call PyMem_RawMalloc/PyMem_RawFree.
This adds new internal-only functions like `_PyMem_DefaultRawMalloc`
that aren't affected by calls to `PyMem_SetAllocator()`, so they're
appropriate for Python runtime initialization and finalization. Use
these calls in places where we previously swapped to the default raw
allocator.
|
|
|
| |
Co-authored-by: Kumar Aditya <kumaraditya@python.org>
|
|
|
|
| |
`PySys_AddWarnOptionUnicode` (#126118)
|
| |
|
| |
|
| |
|
|
|
| |
Now it's correct and closer to Python/initconfig.c
|
| |
|
|
|
|
|
|
|
|
|
| |
`BINARY_OP` (#123926)
Each thread specializes a thread-local copy of the bytecode, created on the first RESUME, in free-threaded builds. All copies of the bytecode for a code object are stored in the co_tlbc array on the code object. Threads reserve a globally unique index identifying its copy of the bytecode in all co_tlbc arrays at thread creation and release the index at thread destruction. The first entry in every co_tlbc array always points to the "main" copy of the bytecode that is stored at the end of the code object. This ensures that no bytecode is copied for programs that do not use threads.
Thread-local bytecode can be disabled at runtime by providing either -X tlbc=0 or PYTHON_TLBC=0. Disabling thread-local bytecode also disables specialization.
Concurrent modifications to the bytecode made by the specializing interpreter and instrumentation use atomics, with specialization taking care not to overwrite an instruction that was instrumented concurrently.
|
|
|
|
|
|
|
|
|
|
|
| |
active in `test_embed.InitConfigTests.test_initconfig_api` (#126302)
Temporarily ignore warnings about JIT deactivation when perf support is active.
This will be reverted as soon as a way is found to determine at run time whether the interpreter was built with JIT. Currently, this is not possible on Windows.
Co-authored-by: Kirill Podoprigora <kirill.bast9@mail.ru>
Co-authored-by: Ken Jin <28750310+Fidget-Spinner@users.noreply.github.com>
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
|
|
|
|
| |
time (#124856)
|
|
|
|
| |
Co-authored-by: Bénédikt Tran <10796600+picnixz@users.noreply.github.com>
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is essentially a cleanup, moving a handful of API declarations to the header files where they fit best, creating new ones when needed.
We do the following:
* add pycore_debug_offsets.h and move _Py_DebugOffsets, etc. there
* inline struct _getargs_runtime_state and struct _gilstate_runtime_state in _PyRuntimeState
* move struct _reftracer_runtime_state to the existing pycore_object_state.h
* add pycore_audit.h and move to it _Py_AuditHookEntry , _PySys_Audit(), and _PySys_ClearAuditHooks
* add audit.h and cpython/audit.h and move the existing audit-related API there
*move the perfmap/trampoline API from cpython/sysmodule.h to cpython/ceval.h, and remove the now-empty cpython/sysmodule.h
|
|
|
|
|
|
| |
Use a `_PyStackRef` and defer the reference to `f_funcobj` when
possible. This avoids some reference count contention in the common case
of executing the same code object from multiple threads concurrently in
the free-threaded build.
|
|
|
|
|
|
|
|
|
|
|
| |
Add PyConfig_Get(), PyConfig_GetInt(), PyConfig_Set() and
PyConfig_Names() functions to get and set the current runtime Python
configuration.
Add visibility and "sys spec" to config and preconfig specifications.
_PyConfig_AsDict() now converts PyConfig.xoptions as a dictionary.
Co-authored-by: Bénédikt Tran <10796600+picnixz@users.noreply.github.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(GH-120520)
* Add an InternalDocs file describing how interning should work and how to use it.
* Add internal functions to *explicitly* request what kind of interning is done:
- `_PyUnicode_InternMortal`
- `_PyUnicode_InternImmortal`
- `_PyUnicode_InternStatic`
* Switch uses of `PyUnicode_InternInPlace` to those.
* Disallow using `_Py_SetImmortal` on strings directly.
You should use `_PyUnicode_InternImmortal` instead:
- Strings should be interned before immortalization, otherwise you're possibly
interning a immortalizing copy.
- `_Py_SetImmortal` doesn't handle the `SSTATE_INTERNED_MORTAL` to
`SSTATE_INTERNED_IMMORTAL` update, and those flags can't be changed in
backports, as they are now part of public API and version-specific ABI.
* Add private `_only_immortal` argument for `sys.getunicodeinternedsize`, used in refleak test machinery.
* Make sure the statically allocated string singletons are unique. This means these sets are now disjoint:
- `_Py_ID`
- `_Py_STR` (including the empty string)
- one-character latin-1 singletons
Now, when you intern a singleton, that exact singleton will be interned.
* Add a `_Py_LATIN1_CHR` macro, use it instead of `_Py_ID`/`_Py_STR` for one-character latin-1 singletons everywhere (including Clinic).
* Intern `_Py_STR` singletons at startup.
* For free-threaded builds, intern `_Py_LATIN1_CHR` singletons at startup.
* Beef up the tests. Cover internal details (marked with `@cpython_only`).
* Add lots of assertions
Co-Authored-By: Eric Snow <ericsnowcurrently@gmail.com>
|
| |
|
|
|
|
|
|
|
|
| |
* Add docs for new APIs
* Add soft-deprecation notices
* Add What's New porting entries
* Update comments referencing `PyFrame_LocalsToFast()` to mention the proxy instead
* Other related cleanups found when looking for refs to the deprecated APIs
|
|
|
|
| |
(#118693)
|
|
|
|
|
|
|
|
|
|
| |
Add the ability to enable/disable the GIL at runtime, and use that in
the C module loading code.
We can't know before running a module init function if it supports
free-threading, so the GIL is temporarily enabled before doing so. If
the module declares support for running without the GIL, the GIL is
later disabled. Otherwise, the GIL is permanently enabled, and will
never be disabled again for the life of the current interpreter.
|
|
|
|
| |
invalid (#118474)
|
|
|
|
| |
(GH-118645)
|
|
|
|
|
|
|
| |
Co-authored-by: Łukasz Langa <lukasz@langa.pl>
Co-authored-by: Marta Gómez Macías <mgmacias@google.com>
Co-authored-by: Lysandros Nikolaou <lisandrosnik@gmail.com>
Co-authored-by: Hugo van Kemenade <1324225+hugovk@users.noreply.github.com>
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This PR adds the ability to enable the GIL if it was disabled at
interpreter startup, and modifies the multi-phase module initialization
path to enable the GIL when loading a module, unless that module's spec
includes a slot indicating it can run safely without the GIL.
PEP 703 called the constant for the slot `Py_mod_gil_not_used`; I went
with `Py_MOD_GIL_NOT_USED` for consistency with gh-104148.
A warning will be issued up to once per interpreter for the first
GIL-using module that is loaded. If `-v` is given, a shorter message
will be printed to stderr every time a GIL-using module is loaded
(including the first one that issues a warning).
|
|
|
|
|
| |
The function returns `True` or `False` depending on whether the GIL is
currently enabled. In the default build, it always returns `True`
because the GIL is always enabled.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
|
|
|
| |
These are cleanups I've pulled out of gh-118116. Mostly, this change moves code around to align with some future changes and to improve clarity a little. There is one very small change in behavior: we now add the module to the per-interpreter caches after updating the global state, rather than before.
|
|
|
|
|
|
|
|
|
| |
Restore these functions removed in Python 3.13 alpha 1:
* Py_SetPythonHome()
* Py_SetProgramName()
* PySys_SetArgvEx()
* PySys_SetArgv()
|
|
|
| |
Use Argument Clinic if possible.
|
|
|
|
|
|
|
|
|
| |
In free-threaded builds, running with `PYTHON_GIL=0` will now disable the
GIL. Follow-up issues track work to re-enable the GIL when loading an
incompatible extension, and to disable the GIL by default.
In order to support re-enabling the GIL at runtime, all GIL-related data
structures are initialized as usual, and disabling the GIL simply sets a flag
that causes `take_gil()` and `drop_gil()` to return early.
|
|
|
|
| |
(#116339)
|
|
|
|
| |
(#115321)
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#114564)
* gh-112529: Remove PyGC_Head from object pre-header in free-threaded build
This avoids allocating space for PyGC_Head in the free-threaded build.
The GC implementation for free-threaded CPython does not use the
PyGC_Head structure.
* The trashcan mechanism uses the `ob_tid` field instead of `_gc_prev`
in the free-threaded build.
* The GDB libpython.py file now determines the offset of the managed
dict field based on whether the running process is a free-threaded
build. Those are identified by the `ob_ref_local` field in PyObject.
* Fixes `_PySys_GetSizeOf()` which incorrectly incorrectly included the
size of `PyGC_Head` in the size of static `PyTypeObject`.
|
|
|
|
| |
implementation (#114385)
|
| |
|
|
|
|
|
| |
This replaces some usages of PyThread_type_lock with PyMutex, which does not require memory allocation to initialize.
This simplifies some of the runtime initialization and is also one step towards avoiding changing the default raw memory allocator during initialize/finalization, which can be non-thread-safe in some circumstances.
|
| |
|
|
|
|
|
|
|
| |
_PyDict_Pop_KnownHash(): remove the default value and the return type
becomes an int.
Co-authored-by: Stefan Behnel <stefan_ml@behnel.de>
Co-authored-by: Antoine Pitrou <pitrou@free.fr>
|
|
|
|
|
| |
Functions which indiscriminately ignore all errors now report them as
unraisable errors.
|
|
|
|
| |
of enabling perf-trampolines (#109666)
|
|
|
|
|
|
| |
---------
Co-authored-by: Victor Stinner <vstinner@python.org>
Co-authored-by: Gregory P. Smith [Google LLC] <greg@krypto.org>
|
|
|
|
|
|
| |
sys.audit() now has assertions to check that the event argument is
not NULL and that the format argument does not use the "N" format.
Add tests on PySys_AuditTuple().
|
|
|
|
|
|
|
|
|
|
|
| |
* Remove unused <locale.h> includes.
* Remove unused <fcntl.h> include in traceback.h.
* Remove redundant <assert.h> and <stddef.h> includes. They are already
included by "Python.h".
* Remove <object.h> include in faulthandler.c. Python.h already includes it.
* Add missing <stdbool.h> in pycore_pythread.h if HAVE_PTHREAD_STUBS
is defined.
* Fix also warnings in pthread_stubs.h: don't redefine macros if they
are already defined, like the __NEED_pthread_t macro.
|
| |
|