aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Lib/test/test_math.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/test/test_math.py')
-rw-r--r--Lib/test/test_math.py183
1 files changed, 117 insertions, 66 deletions
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py
index ac4475e2e53..dddc889375c 100644
--- a/Lib/test/test_math.py
+++ b/Lib/test/test_math.py
@@ -1,24 +1,20 @@
# Python test set -- math module
# XXXX Should not do tests around zero only
-from test.test_support import run_unittest, verbose
+from test.support import run_unittest, verbose, requires_IEEE_754
import unittest
import math
import os
import sys
import random
import struct
+import sysconfig
eps = 1E-05
NAN = float('nan')
INF = float('inf')
NINF = float('-inf')
-# decorator for skipping tests on non-IEEE 754 platforms
-requires_IEEE_754 = unittest.skipUnless(
- float.__getformat__("double").startswith("IEEE"),
- "test requires IEEE 754 doubles")
-
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
@@ -60,6 +56,56 @@ def ulps_check(expected, got, ulps=20):
return "error = {} ulps; permitted error = {} ulps".format(ulps_error,
ulps)
+# Here's a pure Python version of the math.factorial algorithm, for
+# documentation and comparison purposes.
+#
+# Formula:
+#
+# factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
+#
+# where
+#
+# factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
+#
+# The outer product above is an infinite product, but once i >= n.bit_length,
+# (n >> i) < 1 and the corresponding term of the product is empty. So only the
+# finitely many terms for 0 <= i < n.bit_length() contribute anything.
+#
+# We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner
+# product in the formula above starts at 1 for i == n.bit_length(); for each i
+# < n.bit_length() we get the inner product for i from that for i + 1 by
+# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms,
+# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).
+
+def count_set_bits(n):
+ """Number of '1' bits in binary expansion of a nonnnegative integer."""
+ return 1 + count_set_bits(n & n - 1) if n else 0
+
+def partial_product(start, stop):
+ """Product of integers in range(start, stop, 2), computed recursively.
+ start and stop should both be odd, with start <= stop.
+
+ """
+ numfactors = (stop - start) >> 1
+ if not numfactors:
+ return 1
+ elif numfactors == 1:
+ return start
+ else:
+ mid = (start + numfactors) | 1
+ return partial_product(start, mid) * partial_product(mid, stop)
+
+def py_factorial(n):
+ """Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
+ described at http://www.luschny.de/math/factorial/binarysplitfact.html
+
+ """
+ inner = outer = 1
+ for i in reversed(range(n.bit_length())):
+ inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
+ outer *= inner
+ return outer << (n - count_set_bits(n))
+
def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323):
"""Determine whether non-NaN floats a and b are equal to within a
(small) rounding error. The default values for rel_err and
@@ -263,24 +309,21 @@ class MathTests(unittest.TestCase):
def testCeil(self):
self.assertRaises(TypeError, math.ceil)
- # These types will be int in py3k.
- self.assertEqual(float, type(math.ceil(1)))
- self.assertEqual(float, type(math.ceil(1L)))
- self.assertEqual(float, type(math.ceil(1.0)))
+ self.assertEqual(int, type(math.ceil(0.5)))
self.ftest('ceil(0.5)', math.ceil(0.5), 1)
self.ftest('ceil(1.0)', math.ceil(1.0), 1)
self.ftest('ceil(1.5)', math.ceil(1.5), 2)
self.ftest('ceil(-0.5)', math.ceil(-0.5), 0)
self.ftest('ceil(-1.0)', math.ceil(-1.0), -1)
self.ftest('ceil(-1.5)', math.ceil(-1.5), -1)
- self.assertEqual(math.ceil(INF), INF)
- self.assertEqual(math.ceil(NINF), NINF)
- self.assertTrue(math.isnan(math.ceil(NAN)))
-
- class TestCeil(object):
- def __float__(self):
- return 41.3
- class TestNoCeil(object):
+ #self.assertEqual(math.ceil(INF), INF)
+ #self.assertEqual(math.ceil(NINF), NINF)
+ #self.assertTrue(math.isnan(math.ceil(NAN)))
+
+ class TestCeil:
+ def __ceil__(self):
+ return 42
+ class TestNoCeil:
pass
self.ftest('ceil(TestCeil())', math.ceil(TestCeil()), 42)
self.assertRaises(TypeError, math.ceil, TestNoCeil())
@@ -368,25 +411,23 @@ class MathTests(unittest.TestCase):
self.ftest('fabs(1)', math.fabs(1), 1)
def testFactorial(self):
- def fact(n):
- result = 1
- for i in range(1, int(n)+1):
- result *= i
- return result
- values = range(10) + [50, 100, 500]
- random.shuffle(values)
- for x in values:
- for cast in (int, long, float):
- self.assertEqual(math.factorial(cast(x)), fact(x), (x, fact(x), math.factorial(x)))
+ self.assertEqual(math.factorial(0), 1)
+ self.assertEqual(math.factorial(0.0), 1)
+ total = 1
+ for i in range(1, 1000):
+ total *= i
+ self.assertEqual(math.factorial(i), total)
+ self.assertEqual(math.factorial(float(i)), total)
+ self.assertEqual(math.factorial(i), py_factorial(i))
self.assertRaises(ValueError, math.factorial, -1)
+ self.assertRaises(ValueError, math.factorial, -1.0)
self.assertRaises(ValueError, math.factorial, math.pi)
+ self.assertRaises(OverflowError, math.factorial, sys.maxsize+1)
+ self.assertRaises(OverflowError, math.factorial, 10e100)
def testFloor(self):
self.assertRaises(TypeError, math.floor)
- # These types will be int in py3k.
- self.assertEqual(float, type(math.floor(1)))
- self.assertEqual(float, type(math.floor(1L)))
- self.assertEqual(float, type(math.floor(1.0)))
+ self.assertEqual(int, type(math.floor(0.5)))
self.ftest('floor(0.5)', math.floor(0.5), 0)
self.ftest('floor(1.0)', math.floor(1.0), 1)
self.ftest('floor(1.5)', math.floor(1.5), 1)
@@ -397,14 +438,14 @@ class MathTests(unittest.TestCase):
# This fails on some platforms - so check it here
self.ftest('floor(1.23e167)', math.floor(1.23e167), 1.23e167)
self.ftest('floor(-1.23e167)', math.floor(-1.23e167), -1.23e167)
- self.assertEqual(math.ceil(INF), INF)
- self.assertEqual(math.ceil(NINF), NINF)
- self.assertTrue(math.isnan(math.floor(NAN)))
-
- class TestFloor(object):
- def __float__(self):
- return 42.3
- class TestNoFloor(object):
+ #self.assertEqual(math.ceil(INF), INF)
+ #self.assertEqual(math.ceil(NINF), NINF)
+ #self.assertTrue(math.isnan(math.floor(NAN)))
+
+ class TestFloor:
+ def __floor__(self):
+ return 42
+ class TestNoFloor:
pass
self.ftest('floor(TestFloor())', math.floor(TestFloor()), 42)
self.assertRaises(TypeError, math.floor, TestNoFloor())
@@ -443,7 +484,7 @@ class MathTests(unittest.TestCase):
(mant, exp), (emant, eexp) = result, expected
if abs(mant-emant) > eps or exp != eexp:
self.fail('%s returned %r, expected %r'%\
- (name, (mant, exp), (emant,eexp)))
+ (name, result, expected))
testfrexp('frexp(-1)', math.frexp(-1), (-0.5, 1))
testfrexp('frexp(0)', math.frexp(0), (0, 0))
@@ -533,10 +574,10 @@ class MathTests(unittest.TestCase):
self.assertEqual(actual, expected)
from random import random, gauss, shuffle
- for j in xrange(1000):
+ for j in range(1000):
vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
s = 0
- for i in xrange(200):
+ for i in range(200):
v = gauss(0, random()) ** 7 - s
s += v
vals.append(v)
@@ -571,7 +612,7 @@ class MathTests(unittest.TestCase):
self.assertTrue(math.isnan(math.ldexp(NAN, 0)))
# large second argument
- for n in [10**5, 10L**5, 10**10, 10L**10, 10**20, 10**40]:
+ for n in [10**5, 10**10, 10**20, 10**40]:
self.assertEqual(math.ldexp(INF, -n), INF)
self.assertEqual(math.ldexp(NINF, -n), NINF)
self.assertEqual(math.ldexp(1., -n), 0.)
@@ -596,21 +637,17 @@ class MathTests(unittest.TestCase):
self.ftest('log(32,2)', math.log(32,2), 5)
self.ftest('log(10**40, 10)', math.log(10**40, 10), 40)
self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2)
- self.assertEqual(math.log(INF), INF)
+ self.ftest('log(10**1000)', math.log(10**1000),
+ 2302.5850929940457)
+ self.assertRaises(ValueError, math.log, -1.5)
+ self.assertRaises(ValueError, math.log, -10**1000)
self.assertRaises(ValueError, math.log, NINF)
+ self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log(NAN)))
def testLog1p(self):
self.assertRaises(TypeError, math.log1p)
- self.ftest('log1p(1/e -1)', math.log1p(1/math.e-1), -1)
- self.ftest('log1p(0)', math.log1p(0), 0)
- self.ftest('log1p(e-1)', math.log1p(math.e-1), 1)
- self.ftest('log1p(1)', math.log1p(1), math.log(2))
- self.assertEqual(math.log1p(INF), INF)
- self.assertRaises(ValueError, math.log1p, NINF)
- self.assertTrue(math.isnan(math.log1p(NAN)))
n= 2**90
- self.assertAlmostEqual(math.log1p(n), 62.383246250395075)
self.assertAlmostEqual(math.log1p(n), math.log1p(float(n)))
def testLog10(self):
@@ -618,8 +655,11 @@ class MathTests(unittest.TestCase):
self.ftest('log10(0.1)', math.log10(0.1), -1)
self.ftest('log10(1)', math.log10(1), 0)
self.ftest('log10(10)', math.log10(10), 1)
- self.assertEqual(math.log(INF), INF)
+ self.ftest('log10(10**1000)', math.log10(10**1000), 1000.0)
+ self.assertRaises(ValueError, math.log10, -1.5)
+ self.assertRaises(ValueError, math.log10, -10**1000)
self.assertRaises(ValueError, math.log10, NINF)
+ self.assertEqual(math.log(INF), INF)
self.assertTrue(math.isnan(math.log10(NAN)))
def testModf(self):
@@ -629,7 +669,7 @@ class MathTests(unittest.TestCase):
(v1, v2), (e1, e2) = result, expected
if abs(v1-e1) > eps or abs(v2-e2):
self.fail('%s returned %r, expected %r'%\
- (name, (v1,v2), (e1,e2)))
+ (name, result, expected))
testmodf('modf(1.5)', math.modf(1.5), (0.5, 1.0))
testmodf('modf(-1.5)', math.modf(-1.5), (-0.5, -1.0))
@@ -847,11 +887,15 @@ class MathTests(unittest.TestCase):
self.ftest('tanh(inf)', math.tanh(INF), 1)
self.ftest('tanh(-inf)', math.tanh(NINF), -1)
self.assertTrue(math.isnan(math.tanh(NAN)))
+
+ @requires_IEEE_754
+ @unittest.skipIf(sysconfig.get_config_var('TANH_PRESERVES_ZERO_SIGN') == 0,
+ "system tanh() function doesn't copy the sign")
+ def testTanhSign(self):
# check that tanh(-0.) == -0. on IEEE 754 systems
- if float.__getformat__("double").startswith("IEEE"):
- self.assertEqual(math.tanh(-0.), -0.)
- self.assertEqual(math.copysign(1., math.tanh(-0.)),
- math.copysign(1., -0.))
+ self.assertEqual(math.tanh(-0.), -0.)
+ self.assertEqual(math.copysign(1., math.tanh(-0.)),
+ math.copysign(1., -0.))
def test_trunc(self):
self.assertEqual(math.trunc(1), 1)
@@ -876,8 +920,16 @@ class MathTests(unittest.TestCase):
self.assertRaises(TypeError, math.trunc)
self.assertRaises(TypeError, math.trunc, 1, 2)
- self.assertRaises((AttributeError, TypeError), math.trunc,
- TestNoTrunc())
+ self.assertRaises(TypeError, math.trunc, TestNoTrunc())
+
+ def testIsfinite(self):
+ self.assertTrue(math.isfinite(0.0))
+ self.assertTrue(math.isfinite(-0.0))
+ self.assertTrue(math.isfinite(1.0))
+ self.assertTrue(math.isfinite(-1.0))
+ self.assertFalse(math.isfinite(float("nan")))
+ self.assertFalse(math.isfinite(float("inf")))
+ self.assertFalse(math.isfinite(float("-inf")))
def testIsnan(self):
self.assertTrue(math.isnan(float("nan")))
@@ -946,9 +998,9 @@ class MathTests(unittest.TestCase):
func = getattr(math, fn)
try:
result = func(ar)
- except ValueError:
- message = ("Unexpected ValueError in " +
- "test %s:%s(%r)\n" % (id, fn, ar))
+ except ValueError as exc:
+ message = (("Unexpected ValueError: %s\n " +
+ "in test %s:%s(%r)\n") % (exc.args[0], id, fn, ar))
self.fail(message)
except OverflowError:
message = ("Unexpected OverflowError in " +
@@ -956,8 +1008,7 @@ class MathTests(unittest.TestCase):
self.fail(message)
self.ftest("%s:%s(%r)" % (id, fn, ar), result, er)
- @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
- "test requires IEEE 754 doubles")
+ @requires_IEEE_754
def test_mtestfile(self):
ALLOWED_ERROR = 20 # permitted error, in ulps
fail_fmt = "{}:{}({!r}): expected {!r}, got {!r}"