diff options
Diffstat (limited to 'Demo/classes/Complex.py')
-rwxr-xr-x | Demo/classes/Complex.py | 314 |
1 files changed, 0 insertions, 314 deletions
diff --git a/Demo/classes/Complex.py b/Demo/classes/Complex.py deleted file mode 100755 index 64c56d46538..00000000000 --- a/Demo/classes/Complex.py +++ /dev/null @@ -1,314 +0,0 @@ -# Complex numbers -# --------------- - -# [Now that Python has a complex data type built-in, this is not very -# useful, but it's still a nice example class] - -# This module represents complex numbers as instances of the class Complex. -# A Complex instance z has two data attribues, z.re (the real part) and z.im -# (the imaginary part). In fact, z.re and z.im can have any value -- all -# arithmetic operators work regardless of the type of z.re and z.im (as long -# as they support numerical operations). -# -# The following functions exist (Complex is actually a class): -# Complex([re [,im]) -> creates a complex number from a real and an imaginary part -# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes) -# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true -# if z is a tuple(re, im) it will also be converted -# PolarToComplex([r [,phi [,fullcircle]]]) -> -# the complex number z for which r == z.radius() and phi == z.angle(fullcircle) -# (r and phi default to 0) -# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z). -# -# Complex numbers have the following methods: -# z.abs() -> absolute value of z -# z.radius() == z.abs() -# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units -# z.phi([fullcircle]) == z.angle(fullcircle) -# -# These standard functions and unary operators accept complex arguments: -# abs(z) -# -z -# +z -# not z -# repr(z) == `z` -# str(z) -# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero -# the result equals hash(z.re) -# Note that hex(z) and oct(z) are not defined. -# -# These conversions accept complex arguments only if their imaginary part is zero: -# int(z) -# float(z) -# -# The following operators accept two complex numbers, or one complex number -# and one real number (int, long or float): -# z1 + z2 -# z1 - z2 -# z1 * z2 -# z1 / z2 -# pow(z1, z2) -# cmp(z1, z2) -# Note that z1 % z2 and divmod(z1, z2) are not defined, -# nor are shift and mask operations. -# -# The standard module math does not support complex numbers. -# The cmath modules should be used instead. -# -# Idea: -# add a class Polar(r, phi) and mixed-mode arithmetic which -# chooses the most appropriate type for the result: -# Complex for +,-,cmp -# Polar for *,/,pow - -import math -import sys - -twopi = math.pi*2.0 -halfpi = math.pi/2.0 - -def IsComplex(obj): - return hasattr(obj, 're') and hasattr(obj, 'im') - -def ToComplex(obj): - if IsComplex(obj): - return obj - elif isinstance(obj, tuple): - return Complex(*obj) - else: - return Complex(obj) - -def PolarToComplex(r = 0, phi = 0, fullcircle = twopi): - phi = phi * (twopi / fullcircle) - return Complex(math.cos(phi)*r, math.sin(phi)*r) - -def Re(obj): - if IsComplex(obj): - return obj.re - return obj - -def Im(obj): - if IsComplex(obj): - return obj.im - return 0 - -class Complex: - - def __init__(self, re=0, im=0): - _re = 0 - _im = 0 - if IsComplex(re): - _re = re.re - _im = re.im - else: - _re = re - if IsComplex(im): - _re = _re - im.im - _im = _im + im.re - else: - _im = _im + im - # this class is immutable, so setting self.re directly is - # not possible. - self.__dict__['re'] = _re - self.__dict__['im'] = _im - - def __setattr__(self, name, value): - raise TypeError('Complex numbers are immutable') - - def __hash__(self): - if not self.im: - return hash(self.re) - return hash((self.re, self.im)) - - def __repr__(self): - if not self.im: - return 'Complex(%r)' % (self.re,) - else: - return 'Complex(%r, %r)' % (self.re, self.im) - - def __str__(self): - if not self.im: - return repr(self.re) - else: - return 'Complex(%r, %r)' % (self.re, self.im) - - def __neg__(self): - return Complex(-self.re, -self.im) - - def __pos__(self): - return self - - def __abs__(self): - return math.hypot(self.re, self.im) - - def __int__(self): - if self.im: - raise ValueError("can't convert Complex with nonzero im to int") - return int(self.re) - - def __float__(self): - if self.im: - raise ValueError("can't convert Complex with nonzero im to float") - return float(self.re) - - def __cmp__(self, other): - other = ToComplex(other) - return cmp((self.re, self.im), (other.re, other.im)) - - def __rcmp__(self, other): - other = ToComplex(other) - return cmp(other, self) - - def __bool__(self): - return not (self.re == self.im == 0) - - abs = radius = __abs__ - - def angle(self, fullcircle = twopi): - return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi) - - phi = angle - - def __add__(self, other): - other = ToComplex(other) - return Complex(self.re + other.re, self.im + other.im) - - __radd__ = __add__ - - def __sub__(self, other): - other = ToComplex(other) - return Complex(self.re - other.re, self.im - other.im) - - def __rsub__(self, other): - other = ToComplex(other) - return other - self - - def __mul__(self, other): - other = ToComplex(other) - return Complex(self.re*other.re - self.im*other.im, - self.re*other.im + self.im*other.re) - - __rmul__ = __mul__ - - def __div__(self, other): - other = ToComplex(other) - d = float(other.re*other.re + other.im*other.im) - if not d: raise ZeroDivisionError('Complex division') - return Complex((self.re*other.re + self.im*other.im) / d, - (self.im*other.re - self.re*other.im) / d) - - def __rdiv__(self, other): - other = ToComplex(other) - return other / self - - def __pow__(self, n, z=None): - if z is not None: - raise TypeError('Complex does not support ternary pow()') - if IsComplex(n): - if n.im: - if self.im: raise TypeError('Complex to the Complex power') - else: return exp(math.log(self.re)*n) - n = n.re - r = pow(self.abs(), n) - phi = n*self.angle() - return Complex(math.cos(phi)*r, math.sin(phi)*r) - - def __rpow__(self, base): - base = ToComplex(base) - return pow(base, self) - -def exp(z): - r = math.exp(z.re) - return Complex(math.cos(z.im)*r,math.sin(z.im)*r) - - -def checkop(expr, a, b, value, fuzz = 1e-6): - print(' ', a, 'and', b, end=' ') - try: - result = eval(expr) - except: - result = sys.exc_info()[0] - print('->', result) - if isinstance(result, str) or isinstance(value, str): - ok = (result == value) - else: - ok = abs(result - value) <= fuzz - if not ok: - print('!!\t!!\t!! should be', value, 'diff', abs(result - value)) - -def test(): - print('test constructors') - constructor_test = ( - # "expect" is an array [re,im] "got" the Complex. - ( (0,0), Complex() ), - ( (0,0), Complex() ), - ( (1,0), Complex(1) ), - ( (0,1), Complex(0,1) ), - ( (1,2), Complex(Complex(1,2)) ), - ( (1,3), Complex(Complex(1,2),1) ), - ( (0,0), Complex(0,Complex(0,0)) ), - ( (3,4), Complex(3,Complex(4)) ), - ( (-1,3), Complex(1,Complex(3,2)) ), - ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) ) - cnt = [0,0] - for t in constructor_test: - cnt[0] += 1 - if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)): - print(" expected", t[0], "got", t[1]) - cnt[1] += 1 - print(" ", cnt[1], "of", cnt[0], "tests failed") - # test operators - testsuite = { - 'a+b': [ - (1, 10, 11), - (1, Complex(0,10), Complex(1,10)), - (Complex(0,10), 1, Complex(1,10)), - (Complex(0,10), Complex(1), Complex(1,10)), - (Complex(1), Complex(0,10), Complex(1,10)), - ], - 'a-b': [ - (1, 10, -9), - (1, Complex(0,10), Complex(1,-10)), - (Complex(0,10), 1, Complex(-1,10)), - (Complex(0,10), Complex(1), Complex(-1,10)), - (Complex(1), Complex(0,10), Complex(1,-10)), - ], - 'a*b': [ - (1, 10, 10), - (1, Complex(0,10), Complex(0, 10)), - (Complex(0,10), 1, Complex(0,10)), - (Complex(0,10), Complex(1), Complex(0,10)), - (Complex(1), Complex(0,10), Complex(0,10)), - ], - 'a/b': [ - (1., 10, 0.1), - (1, Complex(0,10), Complex(0, -0.1)), - (Complex(0, 10), 1, Complex(0, 10)), - (Complex(0, 10), Complex(1), Complex(0, 10)), - (Complex(1), Complex(0,10), Complex(0, -0.1)), - ], - 'pow(a,b)': [ - (1, 10, 1), - (1, Complex(0,10), 1), - (Complex(0,10), 1, Complex(0,10)), - (Complex(0,10), Complex(1), Complex(0,10)), - (Complex(1), Complex(0,10), 1), - (2, Complex(4,0), 16), - ], - 'cmp(a,b)': [ - (1, 10, -1), - (1, Complex(0,10), 1), - (Complex(0,10), 1, -1), - (Complex(0,10), Complex(1), -1), - (Complex(1), Complex(0,10), 1), - ], - } - for expr in sorted(testsuite): - print(expr + ':') - t = (expr,) - for item in testsuite[expr]: - checkop(*(t+item)) - - -if __name__ == '__main__': - test() |